
Page | 1

Ahsanullah University of Science and Technology (AUST)

Department of Computer Science and Engineering

LABORATORY MANUAL

Course No.: CSE4108
Course Title: Formal Languages and Compilers Lab

For the students of 4thYear, 1stsemester of
B.Sc. in Computer Science and Engineering program

Page | 2

TABLE OF CONTENTS

COURSE OBJECTIVES .. 1

PREFFERED TOOLS .. 1

TEXT/REFERENCE BOOK .. 1

ADMINISTRATIVE POLICY OF THE LABORATORY ... 1

LIST OF SESSIONS ... #

SESSION 1:
Introduction to Declarative and Procedural ways of Representing Knowledge 2

SESSION 2:
Elements of Informed Search .. 5

SESSION 3:
Best First Search ... 9

SESSION 4:
Local Search and Optimization ... 11

SESSION 5:
Classification and Learning ... 13

SESSION 6:
Game Playing and Adversarial Search ... 15

SESSION 7:
Uncertainty and Probabilistic Reasoning .. 18

SUPPLIMENTARY MATERIALS FOR SESSIONS ... 19

MID TERM EXAMINATION ... 35

TERM FINAL EXAMINATION ... 35

Page | 3

COURSE OBJECTIVES

• To be able to use basic elements of procedural and declarative representation of a knowledgebase

along with query processing environment

• To be able to implement simple heuristic functions and to use those for best-first search problems

• To be able to understand and implement local search and beam search as optimization strategies

• To gain insights of supervised and unsupervised learning through implementation of common

classification and regression algorithms

• To gain insights of adversarial search through basic game playing algorithms

• To gain insights of acting under uncertainty using probabilistic reasoning

PREFFERED TOOL(S)

• Prolog and Python

TEXT/REFERENCE BOOK(S)

• Artificial Intelligence: A Modern Approach, S. J. Russell & P. Norvig, Pearson, 3rd Edition.

• The Art of Prolog, Leon Sterling & Ehud Shapiro, MIT Press, 2nd Edition.

• Learn Python the Hard Way, Zed Shaw, Addison-Wesley, 3rd Edition.

ADMINISTRATIVE POLICY OF THE LABORATORY

• Students must perform class assignments individually, without the help of others.
• Viva for lab exercises and assignments will be arranged as an important component

of the assessment procedure.
• Plagiarism is strictly prohibited and will be dealt with strictly.

Page | 4

Session 1: Basics of Procedural and Declarative Knowledgebase

I. OBJECTIVES

• To be able to use basic elements of Python for procedural programming of knowledgebase.

• To be able to represent query processing environments declaring facts and rules in Prolog.

II. DEMONSTRATION OF USEFUL RESOURCES

Knowledgebase and Queries to a Knowledgebase

A simple knowledgebase (KB) from the Kinship Domain

Object relationships as a KB:

Hasibis a parent ofRakib. Rakib is a parent ofSohel. Rakibis a parent ofRebeka. Rashidis a parent
ofHasib. If X is a parent of Y and Y is a parent of Z, then X is a grandparent of Z.

List of tuples and sample procedure to manipulate the KB in Python:

tupleList1=[('parent', 'Hasib', 'Rakib'),('parent', 'Rakib', 'Sohel'),
 ('parent', 'Rakib', 'Rebeka'),('parent', 'Rashid', 'Hasib')]

 # Procedure to find the grandchildren of X

X=str(input("Grandparent:"))
print('Grandchildren:', end=' ')
i=0
while(i<=3):

 if ((tupleList1[i][0] == 'parent')&(tupleList1[i][1] == X)):
 for j in range(4):

if ((tupleList1[j][0] == 'parent') & (tupleList1[i][2] ==
tupleList1[j][1])):

 print(tupleList1[j][2], end=' ')
 i=i+1

Facts and Rules (KB) in Prolog:

parent('Hasib' , 'Rakib'). parent('Rakib' , 'Sohel'). parent('Rakib' , 'Rebeka').
parent('Rashid' , 'Hasib'). grandparent(X, Z) :- parent(X, Y), parent(Y, Z).

/* [Built-in KB is enhanced with the 4 facts and 1 rule; two 2-place predicates; 3 variables;
full stop

 (.) as the end marker of a clause/ sentence / statement; :- as ‘if’; comma (,) as logical
AND.]*/

/* Procedure to find the grandchildren of X */

findGc :- write(' Grandparent: '), read(X), write('Grandchildren: '),
 grandparent(X, Gc), write(Gc), tab(5), fail.

findGc.

Page | 5

 How can we modify the codes to find the grandparents of somebody?
Note that we need to make more changes in Python than in Prolog.
Moreover, we can pose diverse queries to Prolog code and get interpretable answers.

III. LAB EXERCISE

1) Explore thoroughly the supplementary material provided for this session at the end of the

Manual.
2) Run and analyze the codes demonstrated in this session.
3) Modify the Python and Prolog codes demonstrated above to find the grandparents of somebody.

4) Enrich the KB demonstrated above with ‘brother’, ‘sister’, ‘uncle’ and ‘aunt’ rules in Python and
Prolog.

Page | 6

Session 2: Elements of Informed Search

I. OBJECTIVES

• To be able to implement simple heuristic functions in Prolog and in Python.

• To be able to use heuristic functions for simple search problems.

II. DEMONSTRATION OF USEFUL RESOURCES

Heuristic functions for informed search

A. Heuristic functions for general graph search problems

• A common practice for general graph search problems is to take ‘straight line distance’
between two nodes, computed somehow, as a heuristic function value.

• We consider this type of heuristics as ‘given’ for solving problems and will involve in
upcoming sessions.

B. Heuristic functions for other types of problems

i) Consider the following instance of the 8-puzzle problem.
Goal state: Current state:

 Prolog representation of the states may have the following form

▪ We can think of a heuristic function (h1) that determines the number of
mismatching tiles.

 Possible Prolog code may have the following form:

 Possible Python representation and procedure may have the following form:

1 2 3

8 4

7 6 5

8 1 2

3 6 4

 7 5

gtp(1,1,1). gtp(2,1,2). gtp(3,1,3). gtp(4,2,3).gtp(5,3,3). gtp(6,3,2). gtp(7,3,1). gtp(8,2,1). gblnk(2,2).
 tp(1,1,2). tp(2,1,3). tp(3,2,1). tp(4,2,3).tp(5,3,3). tp(6,2,2). tp(7,3,2). tp(8,1,1). blnk(3,1).

1 2 3

8 4

7 6 5

8 1 2

3 6 4

 7 5

go:- calcH(1,0,H), write('Heuristics: '),write(H).
calcH(9,X,X):-!. calcH(T,X,Y):- check(T,V), X1 is X+V, T1 is T+1, calcH(T1,X1,Y).
check(T,V):-tp(T,A,B), gtp(T,C,D), A=C, B=D, V is 0,!. check(_,1):-!.

gtp=[(1,1,1), (2,1,2), (3,1,3), (4,2,3), (5,3,3), (6,3,2), (7,3,1), (8,2,1)]
gblnk = (2,1)
tp=[(1,1,2), (2,1,3), (3,2,1), (4,2,3), (5,3,3), (6,2,2), (7,3,2), (8,1,1)]
blnk = (3,1)

Procedure to find the number of mismatches
i,h=0,0
while(i<=7):

if ((gtp[i][1] != tp[i][1])|(gtp[i][2] != tp[i][2])):
h=h+1

i=i+1
print('Heuristics 1: ',h)

Page | 7

• We can think of another heuristic function (h2) where Manhattan distances of the
tiles are calculated.

 Possible Prolog code may have the following form:
go:- calcH(1,[],L), sumList(L,V),write('Heuristics: '),write(V).
calcH(9,X,X):-!. calcH(T,X,Y):- dist(T,D), append(X,[D],X1), T1 is T+1,
calcH(T1,X1,Y).
dist(T,V):-tp(T,A,B), gtp(T,C,D), V is abs(A-C) + abs(B-D).
sumList([],0):-!. sumList(L,V):-L=[H|T], sumList(T,V1), V is V1+H.

ii) Consider the following instance of 8-queens problem and a heuristic function (h3) that

returns the number of attacking pairs of queens.

 h(I) = face to face in the row + face to face diagonally up + face to face diagonally down

= 1+1+3 = 5.
 How to compute this function using Prolog and Python?

III. LAB EXERCISE

1. Explore thoroughly the supplementary material provided for this session at the end of the
Manual.

2. Run and analyze the codes demonstrated in this session.
3. Define a recursive procedure in Python and in Prolog to find the sum of 1st n terms of an equal-

interval series given the 1st term and the interval.
4. Define a recursive procedure in Python and in Prolog to find the length of a path between two

vertices of a directed weighted graph.
5. Modify the Python and Prolog codes demonstrated above to find h2 and h3 discussed above.

8 Q

7 Q

6 Q

5 Q

4 Q

3 Q

2

1 Q Q

 1 2 3 4 5 6 7 8

 State I

▪ Complete-state formulation of problem; I:
61574381, 1st queen is at the 6th row, 2nd queen
at the 1st row, ….

▪ Any placement of queens can be taken as an
initial state, but no fixed goal state.

▪ h will mean number of pairs of queens that are
in attacking position (face to face); h(I) = 5; We
try to minimize h; Global minimum = 0;

Page | 8

Session 3: Best-First search in Graph representation of Problems

I. OBJECTIVES

• To be able to understand Greedy Best-First and A* search algorithms.

• To be able to implement Greedy Best-First and A* search algorithms in Prolog and in Python.

II. DEMONSTRATION OF USEFUL RESOURCES

C. Greedy Best-First Search

Consider a problem instance given in the following graph.

i - Initial state (source) g - Goal state (destination) h - heuristic function (straight
line distance)

Basic idea and Major steps of the algorithm:

1) A node is selected for expansion based on an evaluation function, f(n), which is taken f(n) =
h(n.

2) A Priority Queue (PQ), which contains nodes in ascending order of h-values, is maintained.
3) A Possible Path (PP) is maintained that contains nodes currently supposed to be in the

solution.
4) A tree of visited nodes along with their children is also maintained which helps to update PQ

and PP.
5) The process begins by placing the source node in the empty PQ, and initiating a tree by placing

that node as its root.
6) The process terminates when the destination node is placed in the PQ, and consequently,

selected for visit.
7) The 1st node from the PQ is selected repeatedly, and each time the tree, the PQ and the PP

are updated:
A. The node in the tree is marked visited and its neighbors from the graph are added to

the tree as its children, while no repeated node is allowed in the tree;
B. The node itself is deleted from the PQ, but its children are added to the PQ.
C. The PP is straightened up to the root from the selected node.

 f

 a

 i

 b

 g
 d

 e

 c

80 25

26

0

55

45

36

35

34
22

28

31 47

42

32

30

27 17

20 Node Neighbor Distance

i a 35

i b 45

a c 20

… … …

 Node h(Node)

i 80

a 55

b 42

… …

Page | 9

Sample representation of tree, PQ and PP in Prolog:

D. A* Search: Minimization of the total estimated solution cost

Distinguishing features:

• Evaluation function,
 f(n) = g(n) + h(n), where
 g(n) = an actual path cost from initial node to node n,
 h(n) = estimated cost of the cheapest path from n to the goal.

• Generates all neighbors (repeatedly, if a path is there), and puts into PQ.

• Suboptimal solutions are avoided.

Sample representation of tree, PQ and PP in Prolog:

III. LAB EXERCISE

1. Explore thoroughly the supplementary material provided for this session at the end of the

Manual.
2. Run and analyze the codes demonstrated in this session.
3. Write a Python program that reads the file created as demonstrated into a dictionary taking

‘name’ as the key and a list consisting of ‘dept’ and ‘cgpa’ as the value for each line. Make changes
in some ‘cgpa’ and then write back the whole file.

4. Implement in generic ways (as multi-modular and interactive systems) the Greedy Best-First and
A* search algorithms in Prolog and in Python.

t_node(i, nil). t_node(a, i).
t_node(b, i). t_node(d, b).
…

pq([node(b, 42), node(a, 55)]).
…

pp([i, b, e, g]).

tr_node(i, 0, nil, 80).
tr_node(a, 1, 0, 90).
tr_node(b, 2, 0, 87).
tr_node(i, 3, 2, 170).
tr_node(d, 4, 2, 98).
tr_node(e, 5, 2, 101).
…

pq([node(g, 17, 10, 97),
node(d, 4, 2, 98),
node(e, 5, 2, 101),
node(g, 13, 9, 104),
 …].

pp([i, a, d, g]).

Page | 10

Session 4: Local Search and Optimization Strategy

I. OBJECTIVES

• To be able to understand hill-climbing local search and beam search strategies.

• To be able to implement simpler variants of hill-climbing and genetic algorithms in Prolog and
in Python.

II. DEMONSTRATION OF USEFUL RESOURCES

E. Developing a multi-modular system for Hill-climbing Local Search

We take the 8-queens problem to demonstrate the working of the Hill-climbing search strategy.
A state is represented as an eight-digit positive integer (with 1, 2, 3, …, 8 only). We generate all
56 successors of a current state and choose the one that appears best as per a heuristic function.
The process is repeated until a state with a specified value is found. Here is the possible outcome
of a typical implementation of the algorithm.

For the initial state 23456578, with threshold value 27, after 3 iterations a solution was found in
the following form:

Iteration max: 20
Iteration max: 24
Iteration max: 25

Found! Id:45 s [7,3,4,6,1,5,2,8] Value:27

And the states were as follows:

state(1, c, [7, 3, 4, 6, 1, 5, 7, 8], 25).
state(2, s, [1, 3, 4, 6, 1, 5, 7, 8], 23).
state(3, s, [2, 3, 4, 6, 1, 5, 7, 8], 24).
…
state(44, s, [7, 3, 4, 6, 1, 5, 1, 8], 25).
state(45, s, [7, 3, 4, 6, 1, 5, 2, 8], 27).
state(46, s, [7, 3, 4, 6, 1, 5, 3, 8], 24).
…
state(55, s, [7, 3, 4, 6, 1, 5, 7, 5], 25).
state(56, s, [7, 3, 4, 6, 1, 5, 7, 6], 24).
state(57, s, [7, 3, 4, 6, 1, 5, 7, 7], 23).

The system gets stuck up frequently at local maxima if the threshold value is set at 28. To avoid
the local maxima we consider the following three variants of the algorithm:

a) Random restart hill climbing: If stuck up at a local maximum, then begin with a new randomly

generated state.
b) Stochastic Hill-climbing: Choose one at random from among the uphill moves.

Page | 11

c) Simulated annealing: Choose one at random from among the successors. Allow an uphill
successor directly, but sometimes allow a downhill one, with a given probability.
[Temperature change may be taken from 25.0 to 0.0 with an interval of 0.1, and the formula

for probability as eE/T, whereE means change in energy (downhill value) and T means
temperature.]

F. Developing a multi-modular system for a typical genetic algorithm

We take a few states of the 8-queens problem as the initial population, set a threshold value for
formation of parent generation, and set a target value of the fitness function. Crossover in parent
population is allowed, and sometimes mutation in some new individual is also allowed.

Sample initial population may look as follows:

intl_sts(12345678).
intl_sts(87654321).
intl_sts(18273645).
intl_sts(45362718).
intl_sts(15263748).
intl_sts(84736251).
intl_sts(13572468).
intl_sts(24681357).

Formation of new population and evaluation of the individuals are carried out until an individual
with the target fitness is found.

III. LAB EXERCISE

1. Explore thoroughly the supplementary material provided for this session at the end of the

Manual.
2. Run and analyze the codes demonstrated in this session.
3. With the help of the supplementary materials and demonstrated codes implement the variants

of hill-climbing and genetic algorithms discussed above in Prolog and Python.

Page | 12

Session 5: Classification and Learning

IV. OBJECTIVES

• To gain insights of supervised and unsupervised machine learning techniques;

• To be able to implement simple classification and regression algorithms using Python
Libraries.

V. DEMONSTRATION OF USEFUL RESOURCES

Machine Learning is an application of artificial intelligence that provides systems the ability to improve
from experience.

✓ Machine learning algorithms are often categorized as supervised or unsupervised.

✓ In supervised learning, the machine is ‘trained’ using data which are labeled, while
unsupervised machine learning allows a model to work on its own to discover information.

✓ Regression and classification are two prominent approaches of learning.

✓ In regression the output variable takes a value from a continuous set of numbers, whereas in
classification the output variable takes a class tag (label/category/discrete number).

✓ In regression analysis, curve fitting is a common process. There are many regression
techniques such as linear regression and polynomial regression.

✓ There are different classification approaches such as Decision Tree, Naïve Bayes, Gradient
Descent, K-Nearest Neighbor, Random Forrest, Support Vector Machine etc.

✓ Some classification approaches can be used for regression analysis as well, for example,
Decision Tree regression and Support Vector regression.

✓ Clustering is a common unsupervised technique which is the process of grouping similar
entities together. The goal is to find similarities in the data and group similar data.

1) Learning Decision Trees

Training Samples: [Described through attribute values along with the class they belong to, from Data
Mining by Han & Kamber]

In each step a root node for a tree/subtree is generated based on best information gain from the
samples.

ID Age Income Student Credit Rating Decision/ Class/

Label 1 ≤ 30 high no fair negative

2 ≤ 30 high no excellent negative

3 31…40 high no fair positive

4 > 40 medium no fair positive

… … … … … …

Age

≤ 30

Y Z X

>40
31…40

Age Income Student Credit

Rating

Decision/

Class/ Label ≤ 30 high no fair negative

≤ 30 high no excellent negative

≤ 30 medium no fair negative

≤ 30 low yes fair positive

≤ 30 medium yes excellent positive

X =

Page | 13

Finally, we get a tree like the one below from the given set of samples:

And it means that we have learned the following 5 rules.

a. If ‘Age’ = ‘≤ 30’ and ‘Student’ = ‘yes’, then ‘Class’ = ‘Buys a computer’.
b. If ‘Age’ = ‘≤ 30’ and ‘Student’ = ‘no’, then ‘Class’ = ‘Does not buy a computer’.
c. …..
d. …..
e. If ‘Age’ = ‘>40’ and ‘Credit Rating’ = ‘excellent’, then ‘Class’ = ‘Does not buy a computer’.

• These rules are used to find the class belonging of the samples in test set. For example, the tast
case, X = (age = 22, income = ‘medium’, student = ‘yes’, credit_rating = ‘fair’) will belong to the
class ‘positive’ (‘Buys a computer’).

2) Naïve Bayes Classifier

✓ We take the same data set and apply the following simplified forms of Bayes’ theorem.
✓ For an unknown sample, X = (x1, x2, … , xn), classifier should predict that X belongs to one of

m classes, Ci with highest posterior probability

P(Ci | X) > P(Cj | X), 1  j  m & j  i. [Maximun posterior probability]
✓ According to Bayes’ theorem:

P(Ci | X) = (P(X | Ci) x P(Ci)) / P(X)

As P(X) is constant for all classes, P(X | Ci) x P(Ci)) needs to be maximized.
✓ P(Ci) = Si / S, where Si – no. of samples of class Ci , S – total no. of samples.
✓ And Discarding attribute dependence,

P(X | Ci) = k=1:n P(xk | Ci).

✓ We take, C1: ‘Buys a computer’ / ‘positive’ and C2: ‘Does not buy a computer’ / ‘negative’.
✓ The unknown sample we want to classify is

X = (age = 22, income = ‘medium’, student = ‘yes’, credit_rating = ‘fair’)
✓ We now compute P(X | Ci), for i = 1, 2 as follows:

P(age = ‘<=30’ | C1) = 2/9 = 0.222
….

✓ We obtain,

P(X| C1) P(C1) = 0.044 x 0.643 = 0.028

Age
>40 ≤ 30

Student
positive

Credit

Rating

positive negative positive negative

31…40

yes no
fair

excellent

Page | 14

 P(X| C2) P(C2) = 0.019 x 0.357 = 0.007

✓ That is, prediction for sample X is ‘positive’ (‘Buys a computer’), as before (with decision

tree)

3) Neural Network Learning

✓ We consider the back-propagation algorithm using MLP(multilayer perceptron) concept
✓ A two-layer fully connected feed-forward Artificial Neural Network is shown below:

✓ (x1, x2, … , xi) – numerically scaled and normalized attribute values of a sample.
✓ Weighted output of one layer is passed on to the next.
✓ Training Samples are fed and network parameters like weights are adjusted based on

feedback (the last layer output). Thus ‘error’ is back-propagated to adjust parameter, that is,
to learn.

4) Linear Regression

✓ Data are modeled using a straight line.

Y = X + 
 Y – random variable (response, dependent)
 X – random variable (predictor, independent)

,  - regression coefficients, that are to be learned

✓ To solve means to find estimated values of  and  that best describes the data.

✓ Methods of least squares can be used to find  and  minimizing error between the actual
data and the estimate of the line.

 = i=1:s (xi – x) (yi- y) / i=1:s (xi – x)2 ,  = y - x,

where x - average of x1, x2, … , xs , y - of y1, y2, … , ys , given sample data points
(x1, y1), (x2, y2), …, (xs, ys).

✓ The line thus obtained can be used to predict an appropriate value of y, given an unknown x.

wij wjk

1

2

i

j

k

x1

x2

xi Ok

Input

layer

Hidden

layer

Output

layer

Page | 15

5) k-Nearest Neighbor Classifier

✓ Each sample represents a point in an n-dimensional ‘pattern space’ of samples.
✓ Closeness may be defined by Euclidian distance in the following way:

D(X, Y) = (i=1:n (xi – yi)2)1/2 ,

where X = (x1, x2, … , xn) and Y = (y1, y2, … , yn)

are two points in the pattern space.
✓ The unknown sample is assigned the most common class from among its k nearest

neighbors.

6) k-Means Clustering

✓ Takes input parameter k and partitions the set of n objects into k clusters so that the intra-
cluster similarity is high, while inter-cluster similarity is low.

✓ Similarity is measured with respect to the mean value of the objects in a cluster.
✓ Initially k objects are selected randomly as centers of clusters, and then others are assigned

to the clusters based on the similarity (distance to a cluster center).
✓ Each time cluster center (mean of a cluster) is updated; Iterated until the criterion function

converges.
✓ Typically, the squared error criterion is used:

E = i=1:k p  Ci |p – mi|2

E – sum of the squared errors of all objects; minimized (until no change)
 p – point in space representing a given object
 mi is the mean of cluster Ci

VI. LAB EXERCISE

1. Explore thoroughly the provided material along with the supplementary material at the end.
2. Run and analyze the demonstrated codes.
3. Implement Linear Regression and k-Nearest Neighbor Classifier without using Scikit-learn.

Page | 16

Session 06: Game Playing and Adversarial Search

I. OBJECTIVES

• To gain insights of adversarial search through basic game playing algorithms.

• To be able to implement search space improvement techniques for game playing.

II. DEMONSTRATION OF USEFUL RESOURCES

Game playing assumes multiple-agent environment, and thus offers ideal example for adversarial
search. As the agents’ goals are in conflict and they always plan against each other, the search space
becomes complicated. Moreover, real games involve huge state spaces.

A. Finding Optimal Game Strategies using MINIMAX Algorithm

Two-player board game as a search problem:
✓ Players are usually named MAX & MIN. Anyone can start, and they make moves alternating

one another.

✓ Search problem with 4 components: Initial state, Successor function, Terminal test, Utility
function.

✓ Strategies of Players: MAX searches for the sequence of moves that leads to a terminal with
maximum possible utility value, even if MIN plays in the best way; MIN searches for the
opposite, that is, terminal with minimum possible utility.

✓ Major steps of the MINIMAX algorithm, from opener’s point of view:
1. Generate the whole game tree.
2. Find the utility of the terminal nodes.
3. Determine the MINIMAX values of the non-terminal nodes, from lower nodes up to the

root. If a level represents MAX’s turn, then the highest values of the successors are
taken, and in case of MIN’s – lowest values.

4. Choose the best opening move.

✓ An imaginary game of small depth may be used for explanation. The game of Tic-Tac-Toe is

suggested for implementation in Python or Prolog.

- A 3x3 grid is provided with the information of opener, and his/her symbol.
- All nodes up to the terminals are generated, and utilities (-1, 0, +1) are assigned to

them.
- The MINIMAX values of non-terminals are computed up to the root, and the winning

strategy is returned.

B) Improving the Performance of the MINIMAX search Strategy

Reduction of search space using alpha-beta pruning:
Cutting off in compliance with already calculated minimax values, that is, values of

o best choices for the maximizing player, ,

o best choices for the minimizing player, .

Page | 17

Example:
 Say, in absence of true minimax values we are given the following sequence of numbers from which
we are supposed to assign a value to each newly generated ‘terminal’ state, that is, a state at the
cutoff depth:

 4, 3, -1, 4, 5, 2, 1, -1, -5, 3, 2, 1. [-5, +5]
We assume further:

• Branching factor = 2;

• Cutoff depth = 2 moves or 4 plies;

• MAX makes the opening move;

• Left to right expansion of the tree is followed.

We do keep in mind:

• It requires to try to prune in every occasion;

• To prune a branch, one must know at least the range of all other siblings, and it is not
enough.

A pruned tree under the above conditions is a simple one, much reduced.

III. LAB EXERCISE

1. Implement the game of Tic-Tac-Toe as suggested in Python or Prolog.
2. Write a program in Prolog or Python to construct a pruned game tree using Alpha-Beta

pruning. Take the sequence, [5, 3, 2, 4, 1, 3, 6, 2, 8, 7, 5, 1, 3, 4] of MINIMAX values for the
nodes at the cutoff depth of 4 plies. Assume that branching factor is 2, MIN makes the first
move, and nodes are generated from right to left.

Page | 18

Session 07: Uncertainty and Probabilistic Reasoning

I. OBJECTIVES

• To gain insights of acting under uncertainty using probabilistic reasoning.

• To be able to implement simple environments for making probabilistic inference.

II. DEMONSTRATION OF USEFUL RESOURCES

For decision making, rational agents are supposed to take help of probabilistic reasoning, beside utility
theory for choosing from alternatives. Those tools are required for dealing with uncertainty due to
partial knowledge of the environment, which is unavoidable.

B. Inference using Full Joint-Probability Distribution

✓ A full joint-probability distribution of random variables describing the whole of a domain can

be used as a complete knowledgebase to answer any question involving the variables.

✓ For example, we can take a domain described using 3 Boolean random variables. The joint
probabilities of the random variables, taken from a domain expert, may look as shown below.

 A A

 C C C C
B 0.108 0.012 0.072 0.008

B 0.016 0.064 0.144 0.576

Observe that the sum of the entries is 1.

And we can compute probability of any compound proposition like B C, A  C, C | B,
etc. from the given entries in the following way.

• P(B C) = P(A  B C) + P(A  B C) = 0.012 + 0.008

• P(A  C) = P(A) + P(C)

= P(A  B  C)+P(A  B C)+P(A B  C)+P(A B C)+

 P(A  B  C)+P(A B  C)

• P(C | B) = P(C B)/P(B)

C) Probabilistic Reasoning using Bayesian Networks

A Bayesian Network is a data structure represented by a directed acyclic graph. A node represents
a random variable and an arc represents a ‘parent-child’ relationship. A node Xi is assigned a
conditional probability table that quantifies the effect of the parents on the node, that is, the
distribution,

P(Xi | Parents(Xi).

A Bayesian Network also provides a complete and useful description of the domain. It is as
powerful as full joint-probability distribution, and at the same time, it is much easy to specify. It
is thus appropriate for real world problems.

Page | 19

❖ An example of Bayesian Networks with five Boolean random variables from the textbook

Making inference using the joint probabilities in the network:

• P(a j  m b  e) = P(a | b  e) x P(j | a) x P(m | a) x P(b) x P(e)
= 0.29 x 0.1 x 0.7 x 0.999 x 0.002

• P(b | a  j  m) = P(b a  j  m) / P(a  j  m)

• P(b a  j  m) = P(b a  j  m e) + P(b a  j  me)

• P(a  j  m) = P(a  j  mbe) +P(a  j  mbe) + P(a  j  mbe) +

P(a  j  mbe)

III. LAB EXERCISE

1. Implement in Python or Prolog the environment for probabilistic inference using full joint-
probability distribution as shown above.

2. Implement in Python or Prolog the environment for probabilistic inference using a
Bayesian network as shown above.

B E P(a)

b e 0.95

b e 0.94

b e 0.29

b e 0.001

P(b)

0.001

Burglary Earthquake

JohnCalls

MerryCalls

Alarm

P(e)

0.002

A P(m)

a 0.7

a 0.01

A P(j)

a 0.9

a 0.05

B b b
E e e
A a a
J j j
M m m

Page | 20

Supplementary Material for Session 1

I. Queries to KB and finding an answer using Backward Chaining in Prolog:
Is Hasib a grandparent of Rebeka?

grandparent ('Hasib', 'Rebeka').

• parent ('Hasib', Y), parent(Y, 'Rebeka').
 parent ('Hasib', 'Rakib'). [Y ← Rakib]

• parent ('Rakib', 'Rebeka').
Yes.

❖ Various types of queries are possible.
Who are parents of Rebeka? parent(X,'Rebeka').
Who are parents? parent(X, _).
Is Hasib a parent? parent('Hasib', _).
Is Hasib a parent of Rebeka? parent('Hasib', 'Rebeka').
Who have parents? parent(_, X).
Who are parents of whom? parent(X, Y).
Is there anybody who is a grandparent of somebody. grandparent(_, _).
Does Sohel have a grandparent? grandparent(_,'Sohel').
Who is a parent and, also, has a parent? parent(X, _),parent(_, X).
Who either is a parent or has a parent? parent(X, _);parent(_, X).

❖ Various rules may also be formulated for father, mother, brother, sister, aunt, uncle, etc.
There may be more than one rule to define, for example, a grandfather.

[brother(X,Y):-parent(Z,X), parent(Z,Y), male(X), not(X=Y).]

❖ Nesting of the following type should be avoided.
 greatGrandParent (X, Z) :- parent(X, Y), grandparent(Y, Z).
 greatGreatGrandParet(X, Z) :- parent(X, Y), greatGrandParent(Y,Z).

II. Working with Structured Data and functions in Python:

• Lists, strings and tuples are ordered sequences of objects.

• Lists and tuples can contain any type of objects. Lists and tuples are like arrays.

• Lists are mutable, so they can be extended or reduced at will.

• Tuples, like strings, are immutable. Tuples are faster, and consume less memory.

• Strings contain only characters.

• A dictionary is an unordered collection of key-value pairs, which can be modified.

#String

S="This is AUST"

#Dictionary

d = {"a":1, "b":2}

d["z"]=4 # d["b"] returns 2

for key in d:

print(key)

for value in d.values():

print(value)

for key, value in d.items():

print(key , ":", value)

#List

l1=[0,2,1]

l1[1]

l1[1]=3

l1.append(5)

l2=[3,4,5]

l1.extend(l2)

print("Length:" ,len(l1))

#Tuple

L3=(2,4,1)
L3[1] # L3[1]= 5 not

allowed

Page | 21

Supplementary Material for Session 2

I. Recursion in Prolog:

i) Ancestor
a. A parent is an ancestor.
b. A parent of an ancestor is an ancestor.

[X is an ancestor of Y, if X is a parent of an ancestor of Y.]

ancestor(X, Y) :- parent(X, Y), !.
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

ii) Factorial of 0 is 1.

If n is greater than 0, then factorial of n is the product of n and the factorial of n-1.

[Factorial of N is F, if N is greater than 0 and F is the product of N and factorial of N-1.]

factorial(0, 1):-!.
factorial(N, F) :- N>0, N1 is N-1, factorial(N1, F1), F is N*F1.

iii) 100+105+110+ … +(100+(n-1)x5)

Sum of the 1st one element is 100.
Sum of the 1st n elements is the sum of 1st n-1 elements and the nth element, which is
100+(n-1)x5.

sum1(1, 100):-!.

#Python is Easy

#Observe the dialog in shell

>>> x=[1,2,3]

>>> y=(9,8)

>>> x

[1, 2, 3]

>>> y

(9, 8)

>>> x,y=y,x

>>> x

(9, 8)

>>> y

[1, 2, 3]

>>> for i in range(5):

 print(i)

>>> for i in range(1,10,2):

 print(i, end=’ ’)

#Python is Easy

#Observe the code of user defined function

def fssum():

 a=int(input("Start:"))

 d=int(input("Interval:"))

 n=int(input("n:"))

 i,s=1,0

 while(i<=n):

 s=s+a+d*(i-1)

 i=i+1

 print("Sum:",s)

 input("Press Enter to continue")

Main

t=int(input("How many times?"))

for i in range(t):

 print("Iteration:",i+1)

 fssum()

parent('Hasib' , 'Rakib').
parent('Rakib' , 'Sohel').
parent('Rakib' , 'Rebeka').
parent('Rashid' , 'Hasib').
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).
ancestor(X, Y) :- parent(X, Y), !.
findancestor:- write('Name:'), read(Y),
ancestor(X,Y), write(X), nl, fail.
findancestor.

Page | 22

sum1(N, S):-N1 is N-1, sum1(N1, S1), S is S1+100+(N-1)*5.

iv) Representing a weighted graph and finding the length of a path
neighbor(i,a,35). neighbor(i,b,45). neighbor(a,c,22).
neighbor(a,d,32). neighbor(b,d,28). neighbor(b,e,36).
neighbor(b,f,27). neighbor(c,d,31). neighbor(c,g,47).
neighbor(d,g,30). neighbor(e,g,26).

pathLength(X,Y,L):- neighbor(X,Y,L),!.
pathLength(X,Y,L):- neighbor(X,Z,L1), pathLength(Z,Y,L2), L is L1+L2.

II. Working with Python:

def ssum(N,I,F):

 if (N==0):

 return 0

 elif (N>=1):

 return ssum(N-1,I,F)+F+(N-1)*I

Main

t=int(input('How many times?'))

for i in range(t):

 print('Iteration:',i+1)

 f=int(input('First element:'))

 d=int(input('Interval:'))

 n=int(input('n:'))

 print('Series sum:', ssum(n,d,f))

Use of global variablesin Python

def f():

 global s

 print (s)

 s = "I love python!"

 print (s)

Global Scope

s = "Python is great!"

f()

print (s)

Page | 23

III. h3 in Prolog.

:-dynamic(hval/1).

/* Evaluates a 8-queens' state given as list of 8 digits */

evalState(L,V):- assert(hval(0)),hl(1,L), di_up(1,L),di_dn(1,L),hval(V),

 retractall(hval(_)).

hl(8,_):-!. hl(I,L):- nthel(I,L,X), chk_incr(I,L,X), I1 is I+1, hl(I1,L).

chk_incr(8,_,_):-!. chk_incr(I,L,X):- I1 is I+1, nthel(I1,L,Y),

 do_incr(X,Y),chk_incr(I1,L,X).

do_incr(X,Y):- X=Y, incr_hval. do_incr(_,_).

incr_hval:-hval(V), V1 is V+1, retract(hval(_)), assert(hval(V1)).

di_up(8,_):-!. di_up(I,L):- nthel(I,L,X), chkup_incr(I,L,X,0), I1 is I+1,

di_up(I1,L).

chkup_incr(8,_,_,_):-!.

chkup_incr(I,L,X,K):- I1 is I+1, nthel(I1,L,Y), K1 is K+1,

 doup_incr(X,Y,K1), chkup_incr(I1,L,X,K1).

doup_incr(X,Y,K1):- X1 is X+K1, Y=X1, incr_hval. doup_incr(_,_,_).

di_dn(8,_):-!. di_dn(I,L):- nthel(I,L,X), chkdn_incr(I,L,X,0), I1 is I+1,

 di_dn(I1,L).

chkdn_incr(8,_,_,_):-!.

chkdn_incr(I,L,X,K):- I1 is I+1, nthel(I1,L,Y),K1 is K+1,

dodn_incr(X,Y,K1), chkdn_incr(I1,L,X,K1).

dodn_incr(X,Y,K1):- X1 is X-K1, Y=X1, incr_hval. dodn_incr(_,_,_).

% A procedure to find the nth element of a list

nthel(N,[_|T],El):- N1 is N-1, nthel(N1,T,El).

nthel(1,[H|_],H):-!.

Page | 24

Supplementary Material for Session 3

A. Major components of Prolog code for GBF and A* search:

% Including data files
:-use_module(inputGraph).

% Declaration of dynamic data
:-dynamic(t_node/2).
:-dynamic(pq/1).
:-dynamic(pp/1).

Changed: …:-dynamic(t_node/4).
Additional: :-dynamic(t_n_indx/1).

% Search begins
search:-write('Enter start node:'),read(S),h_fn(S,HV),
 assert(t_node(S, 'nil')),assert(pq([node(S,HV)])),
 assert(pp([])),generate,find_path_length(L), display_result(L).

Changed: … assert(t_node(S,0,nil,HV)),assert(pq([node(S,0,'nil',HV)])),assert(t_n_indx(1)), …

% Generating the solution
generate:-pq([H|_]),H=node(N,_),N=g, add_to_pp(g),!.
generate:-pq([H|_]),H=node(N,_),update_with(N), generate.

Changed: … H=node(N,_,_,_) … H=node(N,I,_,_), update_with(N,I)

% Adding a node to possible path
add_to_pp(N):-pp(Lst), append(Lst,[N],Lst1), retract(pp(_)),
 assert(pp(Lst1)).

% Updating data according to selected node.
update_with(N):-update_pq_tr(N), update_pp(N).

Changed: … (N,I)…

% Updating Priority Queue and Tree
update_pq_tr(N):-pq(Lst), delete_1st_element(Lst,Lst1), retract(pq(_)),
 assert(pq(Lst1)), add_children(N).

delete_1st_element(Lst,Lst1):-Lst = [_|Lst1].

add_children(N):- neighbor(N,X,_), not(t_node(X,_)),insrt_to_pq(X),
 assert(t_node(X,N)),fail.
add_children(_).

Page | 25

Changed: … (N,I)…
add_children(N,I):- neighbor(N,X,D), t_n_indx(I1), t_node(_,I,_,V),
 h_fn(N,V1), h_fn(X,V2), FNV is V+D-V1+V2,
 insrt_to_pq(X,I1,I,FNV), assert(t_node(X,I1,I,FNV)),
 incr_indx, fail.
add_children(_,_).
incr_indx:- t_n_indx(X), Y is X+1, retract(t_n_indx(X)),assert(t_n_indx(Y)).

% Inserting node to Priority Queue
insrt_to_pq(X):- pq(Lst), h_fn(X,V), insert12pq(node(X,V),Lst,Lst1),
 retract(pq(_)), assert(pq(Lst1)).

insert12pq(El,[], [El]):-!.
insert12pq(El, L1, L2):-L1=[H|_], El=node(_,V1), H=node(_,V2),
 not(V1 > V2), L2 = [El|L1], !.
insert12pq(El, L1, L2):-L1=[H|T], insert12pq(El, T, Lx), L2 = [H|Lx].

Changed:
insrt_to_pq(X,I1,I,FNV):- pq(Lst), insert12pq(node(X,I1,I,FNV),Lst,Lst1),
 retract(pq(_)), assert(pq(Lst1)).
… El=node(_,_,_,V1), H=node(_,_,_,V2)…

% Updating Possible Path
update_pp(N):- retract(pp(_)), assert(pp([])), renew_pp(N).
renew_pp(N):-t_node(N,nil), pp(X), append([N],X,X1),
 retract(pp(_)), assert(pp(X1)), !.
renew_pp(N):- pp(X), append([N],X,X1), retract(pp(_)), assert(pp(X1)),
 t_node(N,N1), renew_pp(N1).

Changed:… (N,I)… t_node(N,I,nil,_) … t_node(N,I,I1,_),t_node(N1,I1,_,_), renew_pp(N1,I1).

% Finding 'shortest' path length
find_path_length(L):-pp(Lst),path_sum(Lst,L).
path_sum(Lst,0):- Lst=[g|_],!.
path_sum(Lst,L):-Lst=[N|T],T=[N1|_], neighbor(N,N1,D), path_sum(T,L1),L is L1+D.

% Displaying 'shortest' path and its length
display_result(L):- pp(Lst), write('Solution:'), write(Lst),nl,
 write('Length:'), write(L).

Page | 26

B. Utilities for Prolog code

% List dynamic data
list_records:-listing(t_node), listing(pq), listing(pp).

% Save file with modified records in place of old ones.
save_records:-tell('gbfs_db.pl'), listing(t_node), listing(pq), listing(pp),told.

Changed: …'astars_db.pl' …

%Clear the database
clr_db:-retractall(t_node(_,_)), retractall(pp(_)), retractall(pq(_)).

Changed: …t_node(_,_,_,_)
Added:retractall(t_n_indx(_))

C. Utilities for Python code

Writing to and reading from a file in Python

f1=open(fn, "w")
print("\n")
for i in range(ln):
 name=str(input("Enter the name:"))
 dept=str(input("Enter the department:"))
 cgpa=str(input("Enter the cgpa:"))
 std=name+"\t"+dept+"\t"+cgpa
 print(std, end="\n", file=f1)
 print("\n")
f1.close

f1=open(fn, "r")
for l in f1:
 name, dept, cgpa =l.split("\t")
 print(name, dept, float(cgpa), end="\n")
f1.close

%Arrange a menu of actions
start:- repeat,
 write('\n1. Clear database'),
 write('\n2. Execute GBFS'),
 write('\n3. Display database'),
 write('\n4. Save database'),
 write('\n5. Exit'),
 write('\n\nEnter your choice: '),
 read(N), N >0, N < 6,
 do(N), N=5,!.

do(1):-write('Done 1').
do(2):- write('Done 2').
do(3):- write('Done 3').
do(4):- write('Done 2').
do(5):- abort.

Page | 27

Including files

imports3Module1 as m1

m1.display_file_lines(fn,ln)

n=m1.num_of_lines(fn)
print("Number of lines in {} is {}.".format(fn,n))

m1.display_file(fn)

Supplementary Material for Session 4

I. Major Components of Prolog Code for Hill-Climbing Local Search and Genetic

Algorithms:

% Code for generating the successors of a 8-queens' state given as a list of 8 digits

gnrt_sucsr(L):- assert(id(1)), assert(state(1, 'c', L, 50)),

 incr_id, mk_new(1, L), retract(id(_)), evaluate.

incr_id:-id(V), V1 is V+1, retract(id(_)), assert(id(V1)).

mk_new(9, _):-!.

mk_new(N, L):- nthel(N, L, X), del_el(X, [1,2,3,4,5,6,7,8], L1),

 cng_mk(N, L, L1), N1 is N+1, mk_new(N1, L).

cng_mk(_, _, []):-!.

cng_mk(N, L, L1):- L1=[H|T], rplc_nthel(N, H, L, L2), id(Id), /* id/1 is a dynamic data */

 assert(state(Id, 's', L2, 50)), incr_id, cng_mk(N, L, T).

% Code for determination and display of the best state

checkall:- state(_, 'c', _, V1), threshold(V2), V1 >= V2, I is 1, dsply(I), !.

checkall:- best(I1,V1), threshold(V2), V1 >= V2, I is I1, dsply(I), !.

checkall:- state(_, 'c', _, V1), best(I, V2) ,V2>V1,state(I, _, L, _),

 retractall(state(_, _, _, _)),write_list(['\nIteration max: ', V2]),

 gnrt_sucsr(L), !.

checkall:- restrt, !.

best(I, Max):- state(_, 's', _, Val), assert(max_val(Val)),

 updt_max, max_val(Max), state(I, _, _, Max), retract(max_val(_)), !.

updt_max:- state(_, _, _, V2), max_val(V1), V2>V1,

 retract(max_val(_)), assert(max_val(V2)), fail.

updt_max:-!.

Page | 28

% Performing Crossover

go_cross(X,Y,CP):- state(X,'p',L1,_), state(Y,'p',L2,_),CP1 is 8-CP,
 del_1st_n_el(L1,CP,L12),del_last_n_el(L1,CP1,L11),
 del_1st_n_el(L2,CP,L22),del_last_n_el(L2,CP1,L21),
 append(L11,L22,LO1),append(L21,L12,LO2), count_sts(_,N),
 N1 is N+1, N2 is N+2,
 assert(state(N1,'o',LO1,50)), assert(state(N2,'o',LO2,50)).

% Performing Mutation

do_mutn:- count_sts('o',N), N1 is random(N)+1,
 assert(id1(0)),get_offspr(N1,I,T,L,V), retract(id1(_)),
 N2 is random(8)+1, N3 is random(8)+1, rplc_nthel(N2,N3,L,L1),
 retract(state(I,T,L,V)), assert(state(I,T,L1,50)).

get_offspr(N1,I,'o',L,V):- state(I,'o',L,V),incr_id1, id1(N), N1=N,!.

II. Sample Codes for Object Oriented Programming with Python

1. Simple example of Class, Objects and Inheritance
class Animal:
 def __init__(self, m):
 self.movement = m
 def printAnimal(self):
 print("Movement: "+self.movement)

class Mammal(Animal):
 def __init__(mml, wb, m):
 Animal.__init__(mml, m)
 mml.warm_blooded= wb
 def printMammal(self):
 self.printAnimal()
 print("Warm blooded: "+self.warm_blooded)

class Cat(Mammal):
 def __init__(kt, c, nol, wb, m):
 Mammal.__init__(kt, wb, m)
 kt.color = c
 kt.no_of_legs= nol
 def printCat(kt):
 kt.printMammal()
 print("Color: "+kt.color+"\n"+
 "Number of Legs: "+str(kt.no_of_legs))

C1=Cat("White", 4, "Yes", "Yes")
print("\nDetailed Information of Cat:\n")

Page | 29

C1.printCat()

M1=Mammal("Yes", "Yes")
print("\nDetailed Information of Mammal:\n")
M1.printMammal()

2. Another simple example with Inheritance and Overloading

class Calculation:
 def calcVolume(self,arg1,arg2=None, arg3=None):
 if arg2 != None:
 return arg1*arg2*arg3
 else:
 return 4*3.14*arg1**3/3

class Sphere(Calculation):
 def __init__(sphr, r):
 sphr.baseRadius = r

 def displaySphere(self):
 print("Sphere volume: ", end='')
 print(self.calcVolume(self.baseRadius))

class Cube(Calculation):
 def __init__(cb, l, w, h):
 cb.length = l
 cb.width = w
 cb.height = h

 def displayCube(c):
 print("Cube volume: ", end='')
 print (c.calcVolume(c.length,
 c.width,c.height))

S1=Sphere(float(input("\nSpere Radious:")))
print("\nSphere Volume Calculation")
S1.displaySphere()

C1=Cube(float(input("\nCube length:")),float(input("Cube width:")),
 float(input("Cube height:")))
print("\nCube Volume Calculation")
C1.displayCube()

III. Sample Code for a Rule based System in Prolog

% Rules:
hypothesis(Patient, flu):-
 symptom(Patient, headache), symptom(Patient, fever),
 symptom(Patient, runny_nose).

Page | 30

hypothesis(Patient, common_cold):-
 symptom(Patient, sneezing),
 symptom(Patient, runny_nose).

 % Facts / Data:
 symptom('Rahim', headache).
 symptom('Karim', headache).
 symptom('Hasib', headache).
 symptom('Karim', fever).
 symptom('Hasib', fever).
 symptom('Hasib', sneezing).
 symptom('Rahim', sneezing).
 symptom('Karim', runny_nose).
 symptom('Rahim', runny_nose).

Supplementary Material for Session 5

I. Some important Python libraries and packages for Machine Learning

In Python, there are many libraries and packages that make Machine Learning easier. Some of them
are as below:

Libraries Short description Sample functions command for
installation

Numpy Numerical Python; for
working with arrays, also for
linear algebra, fourier
transform, and matrices;
much faster than lists

numpy.sin(input_array),
numpy.divide(arr1, arr2),

numpy.convolve(arr1, arr2, mode)

pip install numpy

Scikit-
learn

Tools for data analysis and
data mining; depends
on NumPy

train_test_split(X,Y,test_size=1/3),
KNeighborsClassifier(n_neighbors=7).
fit(X_train,Y_train)

pip install scikit-learn

Pandas Provides data structures and
operations for numerical
tables and time series

pandas.read_csv(filename),
datafile.head(n), datafile.tail(n)

pip install pandas

Matplotlib For static, animated, and
interactive visualizations

matplotlib.pyplot.scatter(X, Y, color='RED')

pip install matplotlib

The Python Package Index (PyPI) is a repository of software for the Python programming language.
pip (acronym for "Pip Installs Packages") is the package management system used to install and manage
software packages written in Python.

II. Reading and exploring a CSV file

Import the necessary libraries

import matplotlib.pyplot as plot

import pandas

https://pypi.org/project/numpy/
https://pypi.org/project/scikit-learn/
https://pypi.org/project/scikit-learn/
https://pypi.org/project/pandas/
https://pypi.org/project/matplotlib/
https://pypi.org/

Page | 31

Import the dataset

dataset = pandas.read_csv('salaryData.csv')

Explore the dataset

print(dataset.shape) # number of rows and columns

print(dataset.head(5)) # display first five rows of the dataset

Show the column heads

for col in dataset.columns:

 print(col)

Capture specific attribute values, including values in the target

column

x = dataset['YearsExperience'].values

y = dataset['Salary'].values

print(x.shape) # shape of x

print(y.shape) # shape of y

X = x.reshape(len(x),1)

Y = y.reshape(len(y),1)

print(X.shape) # shape of X

print(Y.shape) # shape of Y

Plot the data

plot.scatter(X, Y, color='RED')

plot.show()

III. Example of Linear Regression using Python

import numpy

import matplotlib.pyplot as plot

import pandas

from sklearn import metrics

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

dataset=pandas.read_csv('salaryData.csv')

print(dataset.shape)

print(dataset.head(5))

x=dataset['YearsExperience'].values

y=dataset['Salary'].values

X = x.reshape(len(x),1)

Y = y.reshape(len(y),1)

xTrain,xTest,yTrain,yTest=train_test_split(X,Y,test_size=1/3)

Creating a Linear Regression object and fitting it on our training set

linearRegressor=LinearRegression()

linearRegressor.fit(xTrain,yTrain)

Page | 32

Predicting the test set results

yPrediction=linearRegressor.predict(xTest)

Visualization

df=pandas.DataFrame({'Actual':yTest.flatten(),'Predicted':yPrediction.fla

tten()})

print(df)

df.plot(kind='bar')

plot.show()

plot.scatter(xTest,yTest,color='green')

plot.plot(xTest,yPrediction,color='red',linewidth=2)

plot.show()

Displaying errors

print('Mean Absolute

Error:',metrics.mean_absolute_error(yTest,yPrediction))

print('Mean Squared

Error:',metrics.mean_squared_error(yTest,yPrediction))

print('Root Mean Squared Error:',

 numpy.sqrt(metrics.mean_squared_error(yTest,yPrediction)))

IV. Example of k-Nearest Neighbor classifier using Scikit Learn

from sklearn import datasets

from sklearn.metrics import confusion_matrix

froms klearn.model_selection import train_test_split

Loading the iris dataset

iris=datasets.load_iris()

X -> features, y -> label

X=iris.data

y=iris.target

print(X)

print(y)

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.67)

Training a KNN classifier

from sklearn.neighbors import KNeighborsClassifier

knn=KNeighborsClassifier(n_neighbors=7).fit(X_train,y_train)

Accuracy on X_test

accuracy=knn.score(X_test,y_test)

print(accuracy)

Displaying Predictions

knn_predictions=knn.predict(X_test)

Page | 33

df = pandas.DataFrame({'Actual': y_test.flatten(), 'Predicted':

knn_predictions.flatten()})

print(df)

print(knn_predictions)

print(y_test)

Creating a confusion matrix

cm=confusion_matrix(y_test,knn_predictions)

print(cm)

V. Decision Tree

Example of Decision Tree Classifier

from sklearn import datasets

from sklearn.model_selection import train_test_split

from pandas import DataFrame

from sklearn import tree

from sklearn.metrics import accuracy_score

iris = datasets.load_iris()

X = iris.data

Y = iris.target

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=1/3)

Training a decision tree classifier

model = tree.DecisionTreeClassifier()

model.fit(X_train, Y_train)

Testing

model_predictions = model.predict(X_test)

print('Testing Data Targets:', end='\n')

print(Y_test)

print('Predicted Data Targets:', end='\n')

print(model_predictions)

Accuracy of prediction

accuracyScore = accuracy_score(Y_test, model_predictions)

print(accuracyScore)

Regression with Decision Tree

import pandas

from sklearn import metrics

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeRegressor

The dataset

dataset=pandas.read_csv('salaryData.csv')

x=dataset['YearsExperience'].values

Page | 34

y=dataset['Salary'].values

X=x.reshape(len(x),1)

Y=y.reshape(len(y),1)

xTrain,xTest,yTrain,yTest=train_test_split(X,Y,test_size=1/3)

Creating a Decision Tree Regressor

regressor=DecisionTreeRegressor()

regressor.fit(xTrain,yTrain)

Predicting the test set results

yPrediction=regressor.predict(xTest)

Displaing input, output and errors

print('Testing Data Dependant Values:', end='\n')

print(yTest)

print('Predicted values:', end='\n')

print(yPrediction)

print('Mean Absolute

Error:',metrics.mean_absolute_error(yTest,yPrediction))

VI. Naïve Bayes Classifier

Example of Naïve Bayes Classifier

from sklearn import datasets

from sklearn.metrics import confusion_matrix

from sklearn.model_selection import train_test_split

from pandas import DataFrame

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import accuracy_score

The dataset

iris = datasets.load_iris()

X = iris.data

Y = iris.target

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=1/3)

Training a Gaussian Naive Bayes classifier

model = GaussianNB()

model.fit(X_train, Y_train)

Predictions

model_predictions = model.predict(X_test)

print(model_predictions)

print(Y_test)

Accuracy of prediction

accuracyScore = accuracy_score(Y_test, model_predictions)

print(accuracyScore)

Creating a confusion matrix

cm=confusion_matrix(Y_test,model_predictions)

print(cm)

Page | 35

VII. Neural Network Models

Classification with Neural Network

from sklearn import datasets

import pandas

The dataset

iris = datasets.load_iris()

X = iris.data

Y = iris.target

Working with data

from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=1/3)

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

print('Scalled training data:', end='\n')

print(X_train)

print('Scalled testing data:', end='\n')

print(X_test)

Training the classifier

#import warnings

#warnings.simplefilter("ignore")

from sklearn.neural_network import MLPClassifier

mlp = MLPClassifier()

mlp.fit(X_train,Y_train)

Predictions

predictions = mlp.predict(X_test)

print(predictions)

print(Y_test)

Accuracy

from sklearn.metrics import accuracy_score

accuracyScore = accuracy_score(Y_test, predictions)

print(accuracyScore)

VIII. k-means Clustering using Scikit-Learn
Simple Example

from pandas import DataFrame

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

Page | 36

Data = {'x':

[25,34,22,27,33,33,31,22,35,34,67,54,57,43,50,57,59,52,65,47,49,48,35,33,

44,45,38,43,51,46],

'y':

[79,51,53,78,59,74,73,57,69,75,51,32,40,47,53,36,35,58,59,50,25,20,14,12,

20,5,29,27,8,7]

 }

df = DataFrame(Data,columns=['x','y'])

plt.title("Data before clustering")

plt.scatter(df['x'], df['y'])

plt.show()

cn =int(input("How many clusters? :"))

kmeans = KMeans(n_clusters=cn).fit(df)

centroids = kmeans.cluster_centers_

print(centroids)

plt.title("Data after clustering")

plt.scatter(df['x'], df['y'], c= kmeans.labels_)

plt.scatter(centroids[:, 0], centroids[:, 1], c='red')

plt.show()

Upgraded Example

import matplotlib.pyplot as plt

import pandas

from sklearn.cluster import KMeans

from pandas import DataFrame

dataset = pandas.read_csv('ClusteringData.csv')

print(dataset.shape) # number of rows and columns

for col in dataset.columns:

 print(col)

x = dataset['Quiz'].values

y = dataset['Final Exam'].values

print(x)

print(y)

for i in range(len(y)):

 if(y[i]=='Abs'):

 y[i]= 0.0

 else:

 y[i] = float(y[i])

print(x)

print(y)

plt.title("Data before clustering")

plt.xlabel('Class Test Marks')

plt.ylabel('Final Exam Marks')

plt.scatter(x, y, color='BLUE')

plt.show()

cn = int(input("How many clusters? :"))

Page | 37

table={'X':x,'Y':y}

data=DataFrame(table,columns=['X','Y'])

kmeans = KMeans(n_clusters=cn).fit(data)

centroids = kmeans.cluster_centers_

print(centroids)

plt.title("Data after clustering")

plt.xlabel('Class Test Marks')

plt.ylabel('Final Exam Marks')

plt.scatter(data['X'], data['Y'], c= kmeans.labels_)

plt.scatter(centroids[:, 0], centroids[:, 1], c='red')

plt.show()

IX. Cross Validation

from sklearn.datasets import load_iris

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import KFold

from sklearn.metrics import accuracy_score

import warnings

warnings.simplefilter("ignore")

iris_data = load_iris()

x = iris_data.data

y = iris_data.target

kf = KFold(n_splits=5)

print("\nK nearest neighbor:")

i=1

for train_index, test_index in kf.split(x):

 x_train, x_test = x[train_index], x[test_index]

 #print('Fold No.:', i,'**********')

 #print(x_train)

 #print(x_test)

 #i=i+1

 y_train, y_test = y[train_index], y[test_index]

 knn = KNeighborsClassifier()

 knn.fit(x_train,y_train)

 prediction = knn.predict(x_test)

 print(accuracy_score(y_test, prediction))

Page | 38

MID TERM EXAMINATION

There will be a 40-minutes written mid-semester examination on the materials covered in

the sessions conducted during the first half of the semester.

TERM FINAL EXAMINATION

There will be a 40-minutes written end-of-semester examination on the materials covered

in the sessions conducted during the second half of the semester.

END

