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COURSE OBJECTIVES  

 

• To be able to use basic elements of procedural and declarative representation of a knowledgebase 

along with query processing environment 

• To be able to implement simple heuristic functions and to use those for best-first search problems  

• To be able to understand and implement local search and beam search as optimization strategies  

• To gain insights of supervised and unsupervised learning through implementation of common 

classification and regression algorithms 

• To gain insights of adversarial search through basic game playing algorithms 

• To gain insights of acting under uncertainty using probabilistic reasoning 

 

PREFFERED TOOL(S) 

• Prolog and Python 
 

TEXT/REFERENCE BOOK(S) 
 

• Artificial Intelligence: A Modern Approach, S. J. Russell & P. Norvig, Pearson, 3rd Edition. 

• The Art of Prolog, Leon Sterling & Ehud Shapiro, MIT Press, 2nd Edition. 

• Learn Python the Hard Way, Zed Shaw, Addison-Wesley, 3rd Edition.  

ADMINISTRATIVE POLICY OF THE LABORATORY 
 

• Students must perform class assignments individually, without the help of others. 
• Viva for lab exercises and assignments will be arranged as an important component 

of the assessment procedure. 
• Plagiarism is strictly prohibited and will be dealt with strictly. 
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Session 1: Basics of Procedural and Declarative Knowledgebase 

I. OBJECTIVES 
 

• To be able to use basic elements of Python for procedural programming of knowledgebase. 

• To be able to represent query processing environments declaring facts and rules in Prolog. 
 

II. DEMONSTRATION OF USEFUL RESOURCES 
 

Knowledgebase and Queries to a Knowledgebase 
 

A simple knowledgebase (KB) from the Kinship Domain  
 

Object relationships as a KB: 
 

Hasibis a parent ofRakib. Rakib is a parent ofSohel. Rakibis a parent ofRebeka. Rashidis a parent 
ofHasib. If X is a parent of Y and Y is a parent of Z, then X is a grandparent of Z. 

 

List of tuples and sample procedure to manipulate the KB in Python: 
 

tupleList1=[('parent', 'Hasib', 'Rakib'),('parent', 'Rakib', 'Sohel'), 
  ('parent', 'Rakib', 'Rebeka'),('parent', 'Rashid', 'Hasib')] 
 

              # Procedure to find the grandchildren of X 
 

X=str(input("Grandparent:")) 
print('Grandchildren:', end=' ') 
i=0 
while(i<=3): 

  if ((tupleList1[i][0] == 'parent')&( tupleList1[i][1] == X)): 
   for j in range(4): 

if ((tupleList1[j][0] == 'parent') & ( tupleList1[i][2] == 
tupleList1[j][1])): 

    print(tupleList1[j][2], end=' ')    
  i=i+1   

 
Facts and Rules (KB) in Prolog:  
 

parent('Hasib' , 'Rakib'). parent('Rakib' , 'Sohel'). parent('Rakib' , 'Rebeka').  
parent('Rashid' , 'Hasib'). grandparent(X, Z) :- parent(X, Y), parent(Y, Z). 

 

/* [Built-in KB is enhanced with the 4 facts and 1 rule; two 2-place predicates;   3 variables;   
full stop 

      (.) as the end marker of a clause/ sentence / statement;   :- as ‘if’;  comma (,) as logical 
AND. ]*/ 

 
/* Procedure to find the grandchildren of X */ 
 

findGc :- write(' Grandparent: '), read(X), write('Grandchildren: '), 
  grandparent(X, Gc), write(Gc), tab(5), fail. 

findGc. 
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 How can we modify the codes to find the grandparents of somebody? 
Note that we need to make more changes in Python than in Prolog.  
Moreover, we can pose diverse queries to Prolog code and get interpretable answers. 

 
 

III. LAB EXERCISE 
 
1) Explore thoroughly the supplementary material provided for this session at the end of the 

Manual. 
2) Run and analyze the codes demonstrated in this session.  
3) Modify the Python and Prolog codes demonstrated above to find the grandparents of somebody. 

4) Enrich the KB demonstrated above with ‘brother’, ‘sister’, ‘uncle’ and ‘aunt’ rules in Python and 
Prolog.  
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Session 2: Elements of Informed Search 

I. OBJECTIVES 
 

• To be able to implement simple heuristic functions in Prolog and in Python. 

• To be able to use heuristic functions for simple search problems. 
 

II. DEMONSTRATION OF USEFUL RESOURCES 
 

Heuristic functions for informed search 

A. Heuristic functions for general graph search problems 

• A common practice for general graph search problems is to take ‘straight line distance’ 
between two nodes, computed somehow, as a heuristic function value. 

• We consider this type of heuristics as ‘given’ for solving problems and will involve in 
upcoming sessions. 
 

B. Heuristic functions for other types of problems 
 

i) Consider the following instance of the 8-puzzle problem. 
Goal state:    Current state: 

 
 
 

  Prolog representation of the states may have the following form 
 
 
 
 

▪ We can think of a heuristic function (h1) that determines the number of 
mismatching tiles. 

              Possible Prolog code may have the following form: 
 

    
 

  

 
             Possible Python representation and procedure may have the following form: 
 

   
 
 
 
 
 
 

 
 
 
 
 

1 2 3 

8  4 

7 6 5 

 

8 1 2 

3 6 4 

 7 5 

 

gtp(1,1,1). gtp(2,1,2). gtp(3,1,3). gtp(4,2,3).gtp(5,3,3). gtp(6,3,2). gtp(7,3,1). gtp(8,2,1). gblnk(2,2). 
 tp(1,1,2). tp(2,1,3). tp(3,2,1). tp(4,2,3).tp(5,3,3). tp(6,2,2). tp(7,3,2). tp(8,1,1). blnk(3,1). 
 

1 2 3 

8  4 

7 6 5 

 
8 1 2 

3 6 4 

 7 5 

 

go:- calcH(1,0,H), write('Heuristics: '),write(H). 
calcH(9,X,X):-!.     calcH(T,X,Y):- check(T,V), X1 is X+V, T1 is T+1, calcH(T1,X1,Y). 
check(T,V):-tp(T,A,B), gtp(T,C,D), A=C, B=D, V is 0,!.     check(_,1):-!. 

gtp=[(1,1,1), (2,1,2), (3,1,3), (4,2,3), (5,3,3), (6,3,2), (7,3,1), (8,2,1)] 
gblnk = (2,1) 
tp=[(1,1,2), (2,1,3), (3,2,1), (4,2,3), (5,3,3), (6,2,2), (7,3,2), (8,1,1)] 
blnk = (3,1) 

 

# Procedure to find the number of mismatches 
i,h=0,0 
while(i<=7): 

if ((gtp[i][1] != tp[i][1])|(gtp[i][2] != tp[i][2])): 
h=h+1    

i=i+1 
print('Heuristics 1: ',h) 
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• We can think of another heuristic function (h2) where Manhattan distances of the 
tiles are calculated. 

        Possible Prolog code may have the following form: 
go:- calcH(1,[],L), sumList(L,V),write('Heuristics: '),write(V). 
calcH(9,X,X):-!.     calcH(T,X,Y):- dist(T,D), append(X,[D],X1), T1 is T+1, 
calcH(T1,X1,Y). 
dist(T,V):-tp(T,A,B), gtp(T,C,D), V is abs(A-C) + abs(B-D). 
sumList([],0):-!.     sumList(L,V):-L=[H|T], sumList(T,V1), V is V1+H. 

 
ii) Consider the following instance of 8-queens problem and a heuristic function (h3) that 

returns the number of attacking pairs of queens. 
 
 
 
 
 
 
 
 
 
 
 
 
 h(I) = face to face in the row + face to face diagonally up + face to face diagonally down  

= 1+1+3 = 5. 
 How to compute this function using Prolog and Python? 
 

III. LAB EXERCISE 
 

1. Explore thoroughly the supplementary material provided for this session at the end of the 
Manual. 

2. Run and analyze the codes demonstrated in this session.  
3. Define a recursive procedure in Python and in Prolog to find the sum of 1st n terms of an equal-

interval series given the 1st term and the interval.  
4. Define a recursive procedure in Python and in Prolog to find the length of a path between two 

vertices of a directed weighted graph.  
5. Modify the Python and Prolog codes demonstrated above to find h2 and h3 discussed above. 

 

 

 

  

8       Q  

7    Q     

6 Q        

5   Q      

4     Q    

3      Q   

2         

1  Q      Q 

 1 2 3 4 5 6 7 8 

                           State I 

▪ Complete-state formulation of problem; I: 
61574381, 1st queen is at the 6th row, 2nd queen 
at the 1st row, …. 

▪ Any placement of queens can be taken as an 
initial state, but no fixed goal state. 

▪ h will mean number of pairs of queens that are 
in attacking position (face to face); h(I) = 5; We 
try to minimize h; Global minimum = 0;
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Session 3: Best-First search in Graph representation of Problems 

I. OBJECTIVES 
 

• To be able to understand Greedy Best-First and A* search algorithms. 

• To be able to implement Greedy Best-First and A* search algorithms in Prolog and in Python. 
 

II. DEMONSTRATION OF USEFUL RESOURCES 
 

C. Greedy Best-First Search 

Consider a problem instance given in the following graph. 

 

 

 

 

 

 

 

 

i - Initial state (source)  g - Goal state (destination) h - heuristic function (straight 
line distance) 

Basic idea and Major steps of the algorithm: 

1) A node is selected for expansion based on an evaluation function, f(n), which is taken f(n) = 
h(n. 

2) A Priority Queue (PQ), which contains nodes in ascending order of h-values, is maintained.  
3) A Possible Path (PP) is maintained that contains nodes currently supposed to be in the 

solution. 
4) A tree of visited nodes along with their children is also maintained which helps to update PQ 

and PP. 
5) The process begins by placing the source node in the empty PQ, and initiating a tree by placing 

that node as its root. 
6) The process terminates when the destination node is placed in the PQ, and consequently, 

selected for visit. 
7) The 1st node from the PQ is selected repeatedly, and each time the tree, the PQ and the PP 

are updated: 
A. The node in the tree is marked visited and its neighbors from the graph are added to 

the tree as its children, while no repeated node is allowed in the tree; 
B. The node itself is deleted from the PQ, but its children are added to the PQ. 
C. The PP is straightened up to the root from the selected node. 

 

 f 

  a 

  i 

  b 

  g 
 d 

  e 

  c 

80 25 

26 

0 

55 

45 

36 

35 

34 
22 

28 

31 47 

42 

32 

30 

27 17 

20 Node Neighbor Distance 

i a 35 

i b 45 

a c 20 

… … … 

 
 Node h(Node) 

i 80 

a 55 

b 42 

… … 
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Sample representation of tree, PQ and PP in Prolog: 
 
 

 
 

D. A* Search: Minimization of the total estimated solution cost 

Distinguishing features: 

• Evaluation function, 
  f(n) = g(n) + h(n), where  
    g(n) = an actual path cost from initial node to node n, 
    h(n) = estimated cost of the cheapest path from n to the goal. 

• Generates all neighbors (repeatedly, if a path is there), and puts into PQ. 

• Suboptimal solutions are avoided. 
 

Sample representation of tree, PQ and PP in Prolog: 
 
 

 
 
 
 
 
 
 
 

III. LAB EXERCISE 
 
1. Explore thoroughly the supplementary material provided for this session at the end of the 

Manual. 
2. Run and analyze the codes demonstrated in this session.  
3. Write a Python program that reads the file created as demonstrated into a dictionary taking 

‘name’ as the key and a list consisting of ‘dept’ and ‘cgpa’ as the value for each line. Make changes 
in some ‘cgpa’ and then write back the whole file. 

4. Implement in generic ways (as multi-modular and interactive systems) the Greedy Best-First and 
A* search algorithms in Prolog and in Python. 

 

  

t_node(i, nil). t_node(a, i).  
t_node(b, i). t_node(d, b). 
… 

pq([node(b, 42), node(a, 55)]). 
… 

pp([i, b, e, g]). 

tr_node(i, 0, nil, 80). 
tr_node(a, 1, 0, 90). 
tr_node(b, 2, 0, 87). 
tr_node(i, 3, 2, 170). 
tr_node(d, 4, 2, 98). 
tr_node(e, 5, 2, 101). 
… 

pq([node(g, 17, 10, 97),  
node(d, 4, 2, 98),  
node(e, 5, 2, 101),  
node(g, 13, 9, 104), 
        … ]. 

pp([i, a, d, g]). 
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Session 4: Local Search and Optimization Strategy 

I. OBJECTIVES 
 

• To be able to understand hill-climbing local search and beam search strategies. 

• To be able to implement simpler variants of hill-climbing and genetic algorithms in Prolog and 
in Python. 
 

II. DEMONSTRATION OF USEFUL RESOURCES 
 

E. Developing a multi-modular system for Hill-climbing Local Search 
 
We take the 8-queens problem to demonstrate the working of the Hill-climbing search strategy. 
A state is represented as an eight-digit positive integer (with 1, 2, 3, …, 8 only).  We generate all 
56 successors of a current state and choose the one that appears best as per a heuristic function. 
The process is repeated until a state with a specified value is found. Here is the possible outcome 
of a typical implementation of the algorithm. 
 
For the initial state 23456578, with threshold value 27, after 3 iterations a solution was found in 
the following form: 
 
Iteration max: 20 
Iteration max: 24 
Iteration max: 25 
 
Found! Id:45  s  [7,3,4,6,1,5,2,8]       Value:27 
 
And the states were as follows: 
 
state(1, c, [7, 3, 4, 6, 1, 5, 7, 8], 25). 
state(2, s, [1, 3, 4, 6, 1, 5, 7, 8], 23). 
state(3, s, [2, 3, 4, 6, 1, 5, 7, 8], 24). 
… 
state(44, s, [7, 3, 4, 6, 1, 5, 1, 8], 25). 
state(45, s, [7, 3, 4, 6, 1, 5, 2, 8], 27). 
state(46, s, [7, 3, 4, 6, 1, 5, 3, 8], 24). 
… 
state(55, s, [7, 3, 4, 6, 1, 5, 7, 5], 25). 
state(56, s, [7, 3, 4, 6, 1, 5, 7, 6], 24). 
state(57, s, [7, 3, 4, 6, 1, 5, 7, 7], 23). 
 
The system gets stuck up frequently at local maxima if the threshold value is set at 28. To avoid 
the local maxima we consider the following three variants of the algorithm: 
 
a) Random restart hill climbing: If stuck up at a local maximum, then begin with a new randomly 

generated state. 
b) Stochastic Hill-climbing:  Choose one at random from among the uphill moves. 
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c) Simulated annealing: Choose one at random from among the successors. Allow an uphill 
successor directly, but sometimes allow a downhill one, with a given probability. 
[Temperature change may be taken from 25.0 to 0.0 with an interval of 0.1, and the formula 

for probability as eE/T, whereE means change in energy (downhill value) and T means 
temperature.] 
 

F. Developing a multi-modular system for a typical genetic algorithm 

We take a few states of the 8-queens problem as the initial population, set a threshold value for 
formation of parent generation, and set a target value of the fitness function. Crossover in parent 
population is allowed, and sometimes mutation in some new individual is also allowed.  

Sample initial population may look as follows: 

intl_sts(12345678). 
intl_sts(87654321). 
intl_sts(18273645). 
intl_sts(45362718). 
intl_sts(15263748). 
intl_sts(84736251). 
intl_sts(13572468). 
intl_sts(24681357). 
 

Formation of new population and evaluation of the individuals are carried out until an individual 
with the target fitness is found. 
 

 

III. LAB EXERCISE 
 
1. Explore thoroughly the supplementary material provided for this session at the end of the 

Manual. 
2. Run and analyze the codes demonstrated in this session.  
3. With the help of the supplementary materials and demonstrated codes implement the variants 

of hill-climbing and genetic algorithms discussed above in Prolog and Python.  
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Session 5: Classification and Learning 

IV. OBJECTIVES 
 

• To gain insights of supervised and unsupervised machine learning techniques; 

• To be able to implement simple classification and regression algorithms using Python 
Libraries. 
 

V. DEMONSTRATION OF USEFUL RESOURCES 
 

Machine Learning is an application of artificial intelligence that provides systems the ability to improve 
from experience.  
 

✓ Machine learning algorithms are often categorized as supervised or unsupervised. 

✓ In supervised learning, the machine is ‘trained’ using data which are labeled, while 
unsupervised machine learning allows a model to work on its own to discover information.  

✓ Regression and classification are two prominent approaches of learning.  

✓ In regression the output variable takes a value from a continuous set of numbers, whereas in 
classification the output variable takes a class tag (label/category/discrete number).  

✓ In regression analysis, curve fitting is a common process. There are many regression 
techniques such as linear regression and polynomial regression. 

✓ There are different classification approaches such as Decision Tree, Naïve Bayes, Gradient 
Descent, K-Nearest Neighbor, Random Forrest, Support Vector Machine etc. 

✓ Some classification approaches can be used for regression analysis as well, for example, 
Decision Tree regression and Support Vector regression.  

✓ Clustering is a common unsupervised technique which is the process of grouping similar 
entities together. The goal is to find similarities in the data and group similar data.  

1) Learning Decision Trees 

Training Samples: [Described through attribute values along with the class they belong to, from Data 
Mining by Han & Kamber] 
 
 

 
 
 
 
 

In each step a root node for a tree/subtree is generated based on best information gain from the 
samples. 

 
 
 
 
 
 

ID Age Income Student Credit Rating Decision/ Class/ 

Label 1 ≤ 30 high no fair negative 

2 ≤ 30 high no excellent negative 

3 31…40 high no fair positive 

4 > 40 medium no fair positive 

… … … … … … 

 

Age 

≤ 30 

Y Z X 

>40 
31…40 

Age Income Student Credit 

Rating 

Decision/ 

Class/ Label ≤ 30 high no fair negative 

≤ 30 high no excellent negative 

≤ 30 medium no fair negative 

≤ 30 low yes fair positive 

≤ 30 medium yes excellent positive 

 

X = 
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Finally, we get a tree like the one below from the given set of samples: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
And it means that we have learned the following 5 rules. 

a. If ‘Age’ = ‘≤ 30’ and ‘Student’ = ‘yes’, then ‘Class’ = ‘Buys a computer’. 
b. If ‘Age’ = ‘≤ 30’ and ‘Student’ = ‘no’, then ‘Class’ = ‘Does not buy a computer’. 
c. ….. 
d. ….. 
e. If ‘Age’ = ‘>40’ and ‘Credit Rating’ = ‘excellent’, then ‘Class’ = ‘Does not buy a computer’. 

 

• These rules are used to find the class belonging of the samples in test set. For example, the tast 
case, X = (age = 22, income = ‘medium’, student = ‘yes’, credit_rating = ‘fair’) will belong to the 
class ‘positive’ (‘Buys a computer’). 

 
2) Naïve Bayes Classifier 
 

✓ We take the same data set and apply the following simplified forms of Bayes’ theorem. 
✓ For an unknown sample, X = (x1, x2, … , xn), classifier should predict that X belongs to one of 

m classes, Ci with highest posterior probability 

P(Ci | X) > P(Cj | X), 1   j   m & j   i. [Maximun posterior probability] 
✓ According to Bayes’ theorem: 

P(Ci | X) = (P(X | Ci) x P(Ci)) / P(X) 

As P(X) is constant for all classes, P(X | Ci) x P(Ci)) needs to be maximized. 
✓ P(Ci) = Si / S, where Si – no. of samples of class Ci , S – total no. of samples. 
✓ And Discarding attribute dependence, 

P(X | Ci) = k=1:n  P(xk | Ci). 

✓ We take, C1: ‘Buys a computer’ / ‘positive’ and C2: ‘Does not buy a computer’ / ‘negative’. 
✓ The unknown sample we want to classify is 

X = (age = 22, income = ‘medium’, student = ‘yes’, credit_rating = ‘fair’) 
✓ We now compute P(X | Ci), for i = 1, 2 as follows: 

P(age = ‘<=30’ | C1) = 2/9 = 0.222 
…. 

✓ We obtain, 

P(X| C1) P(C1) = 0.044 x 0.643 = 0.028 

Age 
>40 ≤ 30 

Student 
positive 

Credit 

Rating 

positive negative positive negative 

31…40 

yes no 
fair 

excellent 
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  P(X| C2) P(C2) = 0.019 x 0.357 = 0.007 

✓ That is, prediction for sample X is ‘positive’ (‘Buys a computer’ ), as before (with decision 

tree) 

 

3) Neural Network Learning 
 

✓ We consider the back-propagation algorithm using MLP(multilayer perceptron) concept 
✓ A two-layer fully connected feed-forward Artificial Neural Network is shown below: 

 
 
 
 
 
 
 
 
 
 
 

 
✓ ( x1, x2, … , xi) – numerically scaled and normalized attribute values of a sample. 
✓ Weighted output of one layer is passed on to the next. 
✓ Training Samples are fed and network parameters like weights are adjusted based on 

feedback (the last layer output). Thus ‘error’ is back-propagated to adjust parameter, that is, 
to learn. 

 
4) Linear Regression  

 
✓ Data are modeled using a straight line. 

Y = X +  
 Y – random variable (response, dependent) 
 X – random variable (predictor, independent) 

,  - regression coefficients, that are to be learned 
 

✓ To solve means to find estimated values of  and  that best describes the data. 

✓ Methods of least squares can be used to find  and  minimizing error between the actual 
data and the estimate of the line. 
 

 = i=1:s (xi – x) (yi- y) / i=1:s  (xi – x)2 ,   = y - x,  

where x - average of x1, x2, … , xs ,  y - of y1, y2, … , ys , given sample data points 
(x1, y1), (x2, y2),  …, (xs, ys). 

✓ The line thus obtained can be used to predict an appropriate value of y, given an unknown x. 
  

wij wjk 

1 

2 

i 

 

 

j 

 

 

k 

x1 

x2 

xi Ok 

Input 

layer 

Hidden 

layer 

Output 

layer 
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5) k-Nearest Neighbor Classifier 

✓ Each sample represents a point in an n-dimensional ‘pattern space’ of samples. 
✓ Closeness may be defined by Euclidian distance in the following way: 

D(X, Y) = (i=1:n (xi – yi)2 )1/2  ,  

where X = (x1, x2, … , xn) and Y = (y1, y2, … , yn)  

are two points in the pattern space. 
✓ The unknown sample is assigned the most common class from among its k nearest 

neighbors. 
 

6) k-Means Clustering 
 

✓ Takes input parameter k and partitions the set of n objects into k clusters so that the intra-
cluster similarity is high, while inter-cluster similarity is low. 

✓ Similarity is measured with respect to the mean value of the objects in a cluster. 
✓ Initially k objects are selected randomly as centers of clusters, and then others are assigned 

to the clusters based on the similarity (distance to a cluster center). 
✓ Each time cluster center (mean of a cluster) is updated; Iterated until the criterion function 

converges. 
✓ Typically, the squared error criterion is used: 

E = i=1:k p  Ci |p – mi|2   

E – sum of the squared errors of all objects; minimized (until no change) 
 p – point in space representing a given object 
 mi is the mean of cluster Ci 

 
 

 
 

VI. LAB EXERCISE 
 

1. Explore thoroughly the provided material along with the supplementary material at the end. 
2. Run and analyze the demonstrated codes.  
3. Implement Linear Regression and k-Nearest Neighbor Classifier without using Scikit-learn. 
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Session 06: Game Playing and Adversarial Search 

I. OBJECTIVES 
 

• To gain insights of adversarial search through basic game playing algorithms. 

• To be able to implement search space improvement techniques for game playing. 
 

II. DEMONSTRATION OF USEFUL RESOURCES 
 

Game playing assumes multiple-agent environment, and thus offers ideal example for adversarial 
search. As the agents’ goals are in conflict and they always plan against each other, the search space 
becomes complicated. Moreover, real games involve huge state spaces. 
 
A. Finding Optimal Game Strategies using MINIMAX Algorithm 

 
Two-player board game as a search problem: 
✓ Players are usually named MAX & MIN. Anyone can start, and they make moves alternating 

one another.  
 

✓ Search problem with 4 components:  Initial state, Successor function, Terminal test, Utility 
function. 
 

✓ Strategies of Players: MAX searches for the sequence of moves that leads to a terminal with 
maximum possible utility value, even if MIN plays in the best way; MIN searches for the 
opposite, that is, terminal with minimum possible utility. 
 

✓ Major steps of the MINIMAX algorithm, from opener’s point of view: 
1. Generate the whole game tree.  
2. Find the utility of the terminal nodes. 
3. Determine the MINIMAX values of the non-terminal nodes, from lower nodes up to the 

root. If a level represents MAX’s turn, then the highest values of the successors are 
taken, and in case of MIN’s – lowest values. 

4. Choose the best opening move. 
 

✓ An imaginary game of small depth may be used for explanation. The game of Tic-Tac-Toe is 

suggested for implementation in Python or Prolog. 

- A 3x3 grid is provided with the information of opener, and his/her symbol. 
- All nodes up to the terminals are generated, and utilities (-1, 0, +1) are assigned to 

them. 
- The MINIMAX values of non-terminals are computed up to the root, and the winning 

strategy is returned. 
 

B) Improving the Performance of the MINIMAX search Strategy 

Reduction of search space using alpha-beta pruning: 
Cutting off in compliance with already calculated minimax values, that is, values of  

o best choices for the maximizing player, , 

o best choices for the minimizing player, . 
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Example: 
 Say, in absence of true minimax values we are given the following sequence of numbers from which 
we are supposed to assign a value to each newly generated ‘terminal’ state, that is, a state at the 
cutoff depth: 

  4, 3, -1, 4, 5, 2, 1, -1, -5, 3, 2, 1.      [-5, +5] 
We assume further: 

• Branching factor = 2; 

• Cutoff depth = 2 moves or 4 plies; 

• MAX makes the opening move; 

• Left to right expansion of the tree is followed. 
 
We do keep in mind: 

• It requires to try to prune in every occasion; 

• To prune a branch, one must know at least the range of all other siblings, and it is not 
enough. 

 
A pruned tree under the above conditions is a simple one, much reduced.  

 
 

III. LAB EXERCISE 
 

1. Implement the game of Tic-Tac-Toe as suggested in Python or Prolog. 
2. Write a program in Prolog or Python to construct a pruned game tree using Alpha-Beta 

pruning. Take the sequence, [5, 3, 2, 4, 1, 3, 6, 2, 8, 7, 5, 1, 3, 4] of MINIMAX values for the 
nodes at the cutoff depth of 4 plies. Assume that branching factor is 2, MIN makes the first 
move, and nodes are generated from right to left. 

  



Page | 18 
 

 

Session 07: Uncertainty and Probabilistic Reasoning 

I. OBJECTIVES 
 

• To gain insights of acting under uncertainty using probabilistic reasoning. 

• To be able to implement simple environments for making probabilistic inference. 
 

II. DEMONSTRATION OF USEFUL RESOURCES 
 

For decision making, rational agents are supposed to take help of probabilistic reasoning, beside utility 
theory for choosing from alternatives. Those tools are required for dealing with uncertainty due to 
partial knowledge of the environment, which is unavoidable. 
 
B. Inference using Full Joint-Probability Distribution 

 
✓ A full joint-probability distribution of random variables describing the whole of a domain can 

be used as a complete knowledgebase to answer any question involving the variables.  
 

✓ For example, we can take a domain described using 3 Boolean random variables. The joint 
probabilities of the random variables, taken from a domain expert, may look as shown below. 

 A A 

 C C C C 
B 0.108 0.012 0.072 0.008 

B 0.016 0.064 0.144 0.576 

   
Observe that the sum of the entries is 1.  

And we can compute probability of any compound proposition like B  C, A  C, C | B, 
etc. from the given entries in the following way. 

• P(B  C) = P(A  B  C) + P(A  B  C) = 0.012 + 0.008 

• P(A  C) = P(A) + P(C)   

= P(A  B   C)+P(A  B  C)+P(A B   C)+P(A B  C)+ 

   P(A  B   C)+P(A B   C) 

• P(C | B) = P(C B)/P(B) 
 
 

C) Probabilistic Reasoning using Bayesian Networks 

A Bayesian Network is a data structure represented by a directed acyclic graph. A node represents 
a random variable and an arc represents a ‘parent-child’ relationship. A node Xi is assigned a 
conditional probability table that quantifies the effect of the parents on the node, that is, the 
distribution, 

P(Xi | Parents(Xi). 

A Bayesian Network also provides a complete and useful description of the domain. It is as 
powerful as full joint-probability distribution, and at the same time, it is much easy to specify. It 
is thus appropriate for real world problems. 
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❖ An example of Bayesian Networks with five Boolean random variables from the textbook 
 

 

 

 

 

 

 

 

 

Making inference using the joint probabilities in the network: 

• P(a j  m b  e) =  P(a | b  e) x P(j | a) x P(m | a) x P(b) x P(e) 
=  0.29 x 0.1 x 0.7 x 0.999 x 0.002 

• P(b | a  j  m) = P(b a  j  m) / P(a  j  m) 

• P(b a  j  m) = P(b a  j  m e) + P(b a  j  me) 

• P(a  j  m) = P(a  j  mbe) +P(a  j  mbe) + P(a  j  mbe) + 

P(a  j  mbe) 
 

 
 

III. LAB EXERCISE 
 

1.  Implement in Python or Prolog the environment for probabilistic inference using full joint-
probability distribution as shown above. 

2. Implement in Python or Prolog the environment for probabilistic inference using a 
Bayesian network as shown above. 

B E P(a) 

b e 0.95 

b e 0.94 

b e 0.29 

b e 0.001 

 

P(b) 

0.001 

 
Burglary Earthquake 

JohnCalls 

MerryCalls 

Alarm 

P(e) 

0.002 

 

A P(m) 

a 0.7 

a 0.01 

 

A P(j) 

a 0.9 

a 0.05 

 

B b b 
E e e 
A a a 
J j j 
M m m 
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Supplementary Material for Session 1 

I. Queries to KB and finding an answer using Backward Chaining in Prolog: 
Is Hasib a grandparent of Rebeka?  

grandparent ('Hasib', 'Rebeka'). 

• parent ('Hasib', Y), parent(Y, 'Rebeka'). 
   parent ('Hasib', 'Rakib').    [Y ← Rakib] 

• parent ('Rakib', 'Rebeka'). 
Yes. 
 

❖ Various types of queries are possible. 
Who are parents of Rebeka? parent(X,'Rebeka'). 
Who are parents?  parent(X, _). 
Is Hasib a parent? parent('Hasib', _).   
Is Hasib a parent of Rebeka? parent('Hasib', 'Rebeka').    
Who have parents?  parent(_, X).  
Who are parents of whom?  parent(X, Y). 
Is there anybody who is a grandparent of somebody.   grandparent(_, _). 
Does Sohel have a grandparent?   grandparent(_,'Sohel'). 
Who is a parent and, also, has a parent?   parent(X, _),parent(_, X). 
Who either is a parent or has a parent?   parent(X, _);parent(_, X). 
 

❖ Various rules may also be formulated for father, mother, brother, sister, aunt, uncle, etc. 
There may be more than one rule to define, for example, a grandfather. 

[brother(X,Y):-parent(Z,X), parent(Z,Y), male(X), not(X=Y).] 
 

❖ Nesting of the following type should be avoided. 
   greatGrandParent (X, Z) :- parent(X, Y), grandparent(Y, Z). 
   greatGreatGrandParet(X, Z) :- parent(X, Y), greatGrandParent(Y,Z). 
 

II. Working with Structured Data and functions in Python: 

• Lists, strings and tuples are ordered sequences of objects.  

• Lists and tuples can contain any type of objects. Lists and tuples are like arrays.  

• Lists are mutable, so they can be extended or reduced at will.  

• Tuples, like strings, are immutable. Tuples are faster, and consume less memory. 

• Strings contain only characters. 

• A dictionary is an unordered collection of key-value pairs, which can be modified.  
 

 

 

 

 

 

 

 

 

 

 

#String 

S="This is AUST" 
 

#Dictionary 

d = {"a":1, "b":2} 

d["z"]=4   # d["b"] returns 2 

for key in d: 

print(key) 

for value in d.values(): 

print(value) 

for key, value in d.items(): 

print(key , ":", value) 

#List 

l1=[0,2,1] 

l1[1] 

l1[1]=3 

l1.append(5) 

l2=[3,4,5] 

l1.extend(l2) 

print("Length:" ,len(l1)) 

#Tuple 

L3=(2,4,1) 
L3[1] # L3[1]= 5 not 

allowed 



Page | 21 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 
 
 
 
 

 

Supplementary Material for Session 2 

I. Recursion in Prolog: 
 

i) Ancestor 
a. A parent is an ancestor. 
b. A parent of an ancestor is an ancestor. 

[X is an ancestor of Y, if X is a parent of an ancestor of Y.] 
------------------------- 
ancestor(X, Y) :- parent(X, Y), !. 
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y). 

   
ii) Factorial of 0 is 1. 

If n is greater than 0, then factorial of n is the product of n and the factorial of n-1. 
 
[Factorial of N is F, if N is greater than 0 and F is the product of N and factorial of N-1.] 
----------------------- 
factorial(0, 1):-!. 
factorial(N, F) :- N>0, N1 is N-1, factorial(N1, F1), F is N*F1. 

 
iii) 100+105+110+ … +(100+(n-1)x5) 

 
Sum of the 1st one element is 100. 
Sum of the 1st n elements is the sum of 1st n-1 elements and the nth element, which is 
100+(n-1)x5. 
-------------------- 
sum1(1, 100):-!. 

#Python is Easy 

#Observe the dialog in shell 

>>> x=[1,2,3] 

>>> y=(9,8) 

>>> x 

[1, 2, 3] 

>>> y 

(9, 8) 

>>> x,y=y,x 

>>> x 

(9, 8) 

>>> y 

[1, 2, 3] 

>>> for i in range(5): 

 print(i) 

>>> for i in range(1,10,2): 

 print(i, end=’ ’) 

#Python is Easy 

#Observe the code of user defined function 

def fssum(): 

        a=int(input("Start:")) 

        d=int(input("Interval:")) 

        n=int(input("n:")) 

        i,s=1,0 

        while(i<=n): 

                s=s+a+d*(i-1) 

                i=i+1 

        print("Sum:",s) 

        input("Press Enter to continue") 

# Main 

t=int(input("How many times?")) 

for i in range(t): 

        print("Iteration:",i+1) 

        fssum() 

parent('Hasib' , 'Rakib').  
parent('Rakib' , 'Sohel').  
parent('Rakib' , 'Rebeka').  
parent('Rashid' , 'Hasib'). 
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y). 
ancestor(X, Y) :- parent(X, Y), !. 
findancestor:- write('Name:'), read(Y), 
ancestor(X,Y), write(X), nl, fail. 
findancestor. 
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sum1(N, S):-N1 is N-1, sum1(N1, S1), S is S1+100+(N-1)*5. 
 

iv) Representing a weighted graph and finding the length of a path 
neighbor(i,a,35). neighbor(i,b,45). neighbor(a,c,22). 
neighbor(a,d,32). neighbor(b,d,28). neighbor(b,e,36). 
neighbor(b,f,27). neighbor(c,d,31). neighbor(c,g,47). 
neighbor(d,g,30). neighbor(e,g,26). 
 
pathLength(X,Y,L):- neighbor(X,Y,L),!. 
pathLength(X,Y,L):- neighbor(X,Z,L1), pathLength(Z,Y,L2), L is L1+L2. 
 
 

 

II. Working with Python: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

def ssum(N,I,F): 

    if (N==0): 

        return 0 

    elif (N>=1): 

 return ssum(N-1,I,F)+F+(N-1)*I 

# Main 

t=int(input('How many times?')) 

for i in range(t): 

    print('Iteration:',i+1) 

    f=int(input('First element:')) 

    d=int(input('Interval:')) 

    n=int(input('n:')) 

    print('Series sum:', ssum(n,d,f)) 

# Use of global variablesin Python 

def f():  

    global s  

    print (s)  

    s = "I love python!" 

    print (s)   

 

# Global Scope  

s = "Python is great!"  

f()  

print (s) 
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III. h3 in Prolog. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

:-dynamic(hval/1). 

 

/* Evaluates a 8-queens' state given as list of 8 digits */ 

 

evalState(L,V):- assert(hval(0)),hl(1,L), di_up(1,L),di_dn(1,L),hval(V), 

 retractall(hval(_)). 

 

hl(8,_):-!.  hl(I,L):- nthel(I,L,X), chk_incr(I,L,X), I1 is I+1, hl(I1,L). 

 

chk_incr(8,_,_):-!.  chk_incr(I,L,X):- I1 is I+1, nthel(I1,L,Y), 

 do_incr(X,Y),chk_incr(I1,L,X). 

do_incr(X,Y):- X=Y, incr_hval.  do_incr(_,_). 

 

incr_hval:-hval(V), V1 is V+1, retract(hval(_)), assert(hval(V1)). 

 

di_up(8,_):-!.  di_up(I,L):- nthel(I,L,X), chkup_incr(I,L,X,0), I1 is I+1, 

di_up(I1,L). 

chkup_incr(8,_,_,_):-!.   

chkup_incr(I,L,X,K):- I1 is I+1, nthel(I1,L,Y), K1 is K+1, 

   doup_incr(X,Y,K1), chkup_incr(I1,L,X,K1). 

 

doup_incr(X,Y,K1):- X1 is X+K1, Y=X1, incr_hval.  doup_incr(_,_,_). 

 

di_dn(8,_):-!.  di_dn(I,L):- nthel(I,L,X), chkdn_incr(I,L,X,0), I1 is I+1, 

 di_dn(I1,L). 

 

chkdn_incr(8,_,_,_):-!.   

chkdn_incr(I,L,X,K):- I1 is I+1, nthel(I1,L,Y),K1 is K+1, 

dodn_incr(X,Y,K1), chkdn_incr(I1,L,X,K1). 

 

dodn_incr(X,Y,K1):- X1 is X-K1, Y=X1, incr_hval.  dodn_incr(_,_,_). 

 

 

% A procedure to find the nth element of a list 

 

nthel(N,[_|T],El):- N1 is N-1, nthel(N1,T,El). 

nthel(1,[H|_],H):-!. 
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Supplementary Material for Session 3 

A. Major components of Prolog code for GBF and A* search: 
 
% Including data files 
:-use_module(inputGraph). 
----------- 
 
% Declaration of dynamic data 
:-dynamic(t_node/2). 
:-dynamic(pq/1). 
:-dynamic(pp/1). 
----------  
Changed: …:-dynamic(t_node/4). 
Additional:       :-dynamic(t_n_indx/1). 
 
% Search begins 
search:-write('Enter start node:'),read(S),h_fn(S,HV), 
 assert(t_node(S, 'nil')),assert(pq([node(S,HV)])), 
 assert(pp([])),generate,find_path_length(L), display_result(L). 
-------- 
Changed: … assert(t_node(S,0,nil,HV)),assert(pq([node(S,0,'nil',HV)])),assert(t_n_indx(1)), … 
 
% Generating the solution 
generate:-pq([H|_]),H=node(N,_),N=g, add_to_pp(g),!. 
generate:-pq([H|_]),H=node(N,_),update_with(N), generate. 
--------- 
Changed: … H=node(N,_,_,_) … H=node(N,I,_,_), update_with(N,I) 
 
% Adding a node to possible path 
add_to_pp(N):-pp(Lst), append(Lst,[N],Lst1), retract(pp(_)), 
 assert(pp(Lst1)). 
--------- 
 
% Updating data according to selected node. 
update_with(N):-update_pq_tr(N), update_pp(N). 
--------- 
Changed: … (N,I)… 
 
% Updating Priority Queue and Tree 
update_pq_tr(N):-pq(Lst), delete_1st_element(Lst,Lst1), retract(pq(_)), 
 assert(pq(Lst1)), add_children(N). 

delete_1st_element(Lst,Lst1):-Lst = [_|Lst1]. 

add_children(N):- neighbor(N,X,_), not(t_node(X,_)),insrt_to_pq(X), 
 assert(t_node(X,N)),fail. 
add_children(_). 
--------- 



Page | 25 
 

 

Changed: … (N,I)… 
add_children(N,I):- neighbor(N,X,D), t_n_indx(I1), t_node(_,I,_,V), 
 h_fn(N,V1), h_fn(X,V2), FNV is V+D-V1+V2, 
 insrt_to_pq(X,I1,I,FNV), assert(t_node(X,I1,I,FNV)), 
 incr_indx, fail. 
add_children(_,_). 
incr_indx:-  t_n_indx(X), Y is X+1, retract(t_n_indx(X)),assert(t_n_indx(Y)). 
 
% Inserting node to Priority Queue 
insrt_to_pq(X):- pq(Lst), h_fn(X,V), insert12pq(node(X,V),Lst,Lst1), 
 retract(pq(_)), assert(pq(Lst1)). 
 
insert12pq(El,[], [El]):-!. 
insert12pq(El, L1, L2):-L1=[H|_], El=node(_,V1), H=node(_,V2), 
                            not(V1 > V2), L2 = [El|L1], !. 
insert12pq(El, L1, L2):-L1=[H|T], insert12pq(El, T, Lx), L2 = [H|Lx]. 
--------- 
Changed:  
insrt_to_pq(X,I1,I,FNV):- pq(Lst), insert12pq(node(X,I1,I,FNV),Lst,Lst1), 
 retract(pq(_)), assert(pq(Lst1)). 
… El=node(_,_,_,V1), H=node(_,_,_,V2)… 
 
% Updating Possible Path 
update_pp(N):- retract(pp(_)), assert(pp([])), renew_pp(N). 
renew_pp(N):-t_node(N,nil), pp(X), append([N],X,X1), 
 retract(pp(_)), assert(pp(X1)), !. 
renew_pp(N):- pp(X), append([N],X,X1), retract(pp(_)), assert(pp(X1)), 
 t_node(N,N1), renew_pp(N1). 
--------- 
Changed:… (N,I)… t_node(N,I,nil,_) … t_node(N,I,I1,_),t_node(N1,I1,_,_), renew_pp(N1,I1). 
 
% Finding 'shortest' path length 
find_path_length(L):-pp(Lst),path_sum(Lst,L). 
path_sum(Lst,0):- Lst=[g|_],!. 
path_sum(Lst,L):-Lst=[N|T],T=[N1|_], neighbor(N,N1,D), path_sum(T,L1),L is L1+D. 
--------- 
 
% Displaying 'shortest' path and its length 
display_result(L):- pp(Lst), write('Solution:'), write(Lst),nl, 
 write('Length:'), write(L). 
--------- 
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B. Utilities for Prolog code 
 

 
 
 
 
 
 
 
 
 
 
 
% List dynamic data 
list_records:-listing(t_node), listing(pq), listing(pp). 
 
% Save file with modified records in place of old ones. 
save_records:-tell('gbfs_db.pl'), listing(t_node), listing(pq), listing(pp),told. 
--------- 
Changed: …'astars_db.pl' … 
 
%Clear the database 
clr_db:-retractall(t_node(_,_)), retractall(pp(_)), retractall(pq(_)). 
--------- 
Changed: …t_node(_,_,_,_) 
Added:retractall(t_n_indx(_)) 
 

C. Utilities for Python code 
 

# Writing to and reading from a file in Python 

f1=open(fn, "w") 
print("\n")        
for i in range(ln): 
        name=str(input("Enter the name:")) 
        dept=str(input("Enter the department:")) 
        cgpa=str(input("Enter the cgpa:")) 
        std=name+"\t"+dept+"\t"+cgpa 
        print(std, end="\n", file=f1) 
        print("\n") 
f1.close 
 

f1=open(fn, "r")        
for l in f1: 
        name, dept, cgpa =l.split("\t") 
        print(name, dept, float(cgpa), end="\n") 
f1.close 

 

 

%Arrange a menu of actions 
start:- repeat, 
 write('\n1. Clear database'), 
 write('\n2. Execute GBFS'), 
 write('\n3. Display database'), 
 write('\n4. Save database'), 
 write('\n5. Exit'), 
 write('\n\nEnter your choice: '), 
 read(N), N >0, N < 6, 
 do(N), N=5,!. 

do(1):-write('Done 1'). 
do(2):- write('Done 2'). 
do(3):- write('Done 3'). 
do(4):- write('Done 2'). 
do(5):- abort. 
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# Including files  
 

imports3Module1 as m1 
 
m1.display_file_lines(fn,ln) 
 
n=m1.num_of_lines(fn) 
print("Number of lines in {} is {}.".format(fn,n)) 
 
m1.display_file(fn) 

 

Supplementary Material for Session 4 

I. Major Components of Prolog Code for Hill-Climbing Local Search and Genetic 

Algorithms: 

 
% Code for generating the successors of a 8-queens' state given as a list of 8 digits 

gnrt_sucsr(L):- assert(id(1)), assert(state(1, 'c', L, 50)), 

  incr_id, mk_new(1, L), retract(id(_)), evaluate. 

 

incr_id:-id(V), V1 is V+1, retract(id(_)), assert(id(V1)). 

 

mk_new(9, _):-!. 

mk_new(N, L):- nthel(N, L, X), del_el(X, [1,2,3,4,5,6,7,8], L1), 

  cng_mk(N, L, L1), N1 is N+1, mk_new(N1, L). 

 

cng_mk(_, _, []):-!. 

cng_mk(N, L, L1):- L1=[H|T], rplc_nthel(N, H, L, L2), id(Id),    /* id/1 is a dynamic data */ 

  assert(state(Id, 's', L2, 50)), incr_id, cng_mk(N, L, T). 
 

% Code for determination and display of the best state  

checkall:- state(_, 'c', _, V1), threshold(V2), V1 >= V2, I is 1, dsply(I), !. 

checkall:- best(I1,V1), threshold(V2), V1 >= V2, I is I1, dsply(I), !. 

checkall:- state(_, 'c', _, V1), best(I, V2) ,V2>V1,state(I, _, L, _), 

  retractall(state(_, _, _, _)),write_list(['\nIteration max: ', V2]), 

  gnrt_sucsr(L), !. 

checkall:- restrt, !. 

 

best(I, Max):- state(_, 's', _, Val), assert(max_val(Val)), 

  updt_max, max_val(Max), state(I, _, _, Max), retract(max_val(_)), !. 

 

updt_max:- state(_, _, _, V2),  max_val(V1), V2>V1, 

  retract(max_val(_)), assert(max_val(V2)), fail. 

updt_max:-!. 
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% Performing Crossover  
 

go_cross(X,Y,CP):- state(X,'p',L1,_), state(Y,'p',L2,_),CP1 is 8-CP, 
 del_1st_n_el(L1,CP,L12),del_last_n_el(L1,CP1,L11), 
 del_1st_n_el(L2,CP,L22),del_last_n_el(L2,CP1,L21), 
 append(L11,L22,LO1),append(L21,L12,LO2), count_sts(_,N), 
 N1 is N+1, N2 is N+2, 
 assert(state(N1,'o',LO1,50)), assert(state(N2,'o',LO2,50)). 
 

% Performing Mutation  
 

do_mutn:- count_sts('o',N), N1 is random(N)+1, 
  assert(id1(0)),get_offspr(N1,I,T,L,V), retract(id1(_)), 
  N2 is random(8)+1, N3 is random(8)+1, rplc_nthel(N2,N3,L,L1), 
  retract(state(I,T,L,V)), assert(state(I,T,L1,50)). 
 

get_offspr(N1,I,'o',L,V):- state(I,'o',L,V),incr_id1, id1(N), N1=N,!. 
 

II. Sample Codes for Object Oriented Programming with Python 
 

1.  Simple example of Class, Objects and Inheritance 
class Animal: 
       def __init__(self, m): 
              self.movement = m 
       def printAnimal(self): 
              print("Movement: "+self.movement) 
 
class Mammal(Animal): 
       def __init__(mml, wb, m): 
              Animal.__init__(mml, m) 
              mml.warm_blooded= wb 
       def printMammal(self): 
              self.printAnimal() 
              print("Warm blooded: "+self.warm_blooded) 
 
class Cat(Mammal): 
       def __init__(kt, c, nol, wb, m): 
              Mammal.__init__(kt, wb, m) 
              kt.color = c 
              kt.no_of_legs= nol 
       def printCat(kt): 
              kt.printMammal() 
              print("Color: "+kt.color+"\n"+ 
                    "Number of Legs: "+str(kt.no_of_legs)) 
 
C1=Cat("White", 4, "Yes", "Yes") 
print("\nDetailed Information of Cat:\n") 
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C1.printCat() 
 
M1=Mammal("Yes", "Yes") 
print("\nDetailed Information of Mammal:\n") 
M1.printMammal() 

 
2.  Another simple example with Inheritance and Overloading 

class Calculation: 
       def calcVolume(self,arg1,arg2=None, arg3=None): 
              if arg2 != None: 
                     return arg1*arg2*arg3 
              else: 
                     return 4*3.14*arg1**3/3       
 
class Sphere(Calculation): 
       def __init__(sphr, r): 
              sphr.baseRadius = r 
 
       def displaySphere(self): 
              print("Sphere volume: ", end='') 
              print(self.calcVolume(self.baseRadius)) 
 
class Cube(Calculation): 
       def __init__(cb, l, w, h): 
              cb.length = l 
              cb.width = w 
              cb.height = h 
 
       def displayCube(c): 
              print("Cube volume: ", end='') 
              print (c.calcVolume(c.length, 
                                   c.width,c.height)) 

 
S1=Sphere(float(input("\nSpere Radious:"))) 
print("\nSphere Volume Calculation") 
S1.displaySphere() 
 
C1=Cube(float(input("\nCube length:")),float(input("Cube width:")), 
        float(input("Cube height:"))) 
print("\nCube Volume Calculation") 
C1.displayCube() 

III.  Sample Code for a Rule based System in Prolog 
 
% Rules: 
hypothesis(Patient, flu):- 
 symptom(Patient, headache), symptom(Patient, fever), 
 symptom(Patient, runny_nose). 
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hypothesis(Patient, common_cold):- 
 symptom(Patient, sneezing), 
 symptom(Patient, runny_nose). 
 
 % Facts / Data: 
 symptom('Rahim', headache). 
 symptom('Karim', headache). 
 symptom('Hasib', headache). 
 symptom('Karim', fever). 
 symptom('Hasib', fever). 
 symptom('Hasib', sneezing). 
 symptom('Rahim', sneezing). 
 symptom('Karim', runny_nose). 
 symptom('Rahim', runny_nose). 

 

Supplementary Material for Session 5 

I. Some important Python libraries and packages for Machine Learning 
 

In Python, there are many libraries and packages that make Machine Learning easier. Some of them 
are as below: 

Libraries Short description Sample functions command for 
installation 

Numpy Numerical Python; for 
working with arrays, also for 
linear algebra, fourier 
transform, and matrices; 
much faster than lists 

numpy.sin(input_array), 
numpy.divide(arr1, arr2), 

numpy.convolve(arr1, arr2, mode) 

 

pip install numpy 

Scikit-
learn 

Tools for data analysis and 
data mining; depends 
on NumPy 

train_test_split(X,Y,test_size=1/3), 
KNeighborsClassifier(n_neighbors=7). 
fit(X_train,Y_train) 

pip install scikit-learn 

Pandas Provides data structures and 
operations for numerical 
tables and time series 

pandas.read_csv(filename), 
datafile.head(n), datafile.tail(n) 

pip install pandas 

Matplotlib For static, animated, and 
interactive visualizations 

matplotlib.pyplot.scatter(X, Y, color='RED')  
 

pip install matplotlib 

 
The Python Package Index (PyPI) is a repository of software for the Python programming language. 
pip (acronym for "Pip Installs Packages") is the package management system used to install and manage 
software packages written in Python. 
 

II. Reading and exploring a CSV file 
 
# Import the necessary libraries 

import matplotlib.pyplot as plot 

import pandas 

https://pypi.org/project/numpy/
https://pypi.org/project/scikit-learn/
https://pypi.org/project/scikit-learn/
https://pypi.org/project/pandas/
https://pypi.org/project/matplotlib/
https://pypi.org/
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# Import the dataset 

dataset = pandas.read_csv('salaryData.csv') 

 

# Explore the dataset 

print(dataset.shape) # number of rows and columns 

print(dataset.head(5)) # display first five rows of the dataset 

 

# Show the column heads  

for col in dataset.columns:  

    print(col) 

 

# Capture specific attribute values, including values in the target 

column 

x = dataset['YearsExperience'].values 

y = dataset['Salary'].values 

 

# print(x.shape) # shape of x 

# print(y.shape) # shape of y 

 

X = x.reshape(len(x),1) 

Y = y.reshape(len(y),1) 

# print(X.shape) # shape of X 

# print(Y.shape) # shape of Y 

 

# Plot the data 

plot.scatter(X, Y,  color='RED') 

plot.show() 

 

 
 

III.  Example of Linear Regression using Python  
 
import numpy 

import matplotlib.pyplot as plot 

import pandas 

from sklearn import metrics 

from sklearn.model_selection import train_test_split 

from sklearn.linear_model import LinearRegression 

 

dataset=pandas.read_csv('salaryData.csv') 

 

print(dataset.shape) 

print(dataset.head(5)) 

 

x=dataset['YearsExperience'].values 

y=dataset['Salary'].values 

 

X = x.reshape(len(x),1) 

Y = y.reshape(len(y),1) 

 

xTrain,xTest,yTrain,yTest=train_test_split(X,Y,test_size=1/3) 

 

# Creating a Linear Regression object and fitting it on our training set 

linearRegressor=LinearRegression() 

linearRegressor.fit(xTrain,yTrain) 
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# Predicting the test set results 

yPrediction=linearRegressor.predict(xTest) 

 

# Visualization 

df=pandas.DataFrame({'Actual':yTest.flatten(),'Predicted':yPrediction.fla

tten()}) 

print(df) 

 

df.plot(kind='bar') 

plot.show() 

 

plot.scatter(xTest,yTest,color='green') 

plot.plot(xTest,yPrediction,color='red',linewidth=2) 

plot.show() 

 

# Displaying errors 

print('Mean Absolute 

Error:',metrics.mean_absolute_error(yTest,yPrediction)) 

print('Mean Squared 

Error:',metrics.mean_squared_error(yTest,yPrediction)) 

print('Root Mean Squared Error:', 

     numpy.sqrt(metrics.mean_squared_error(yTest,yPrediction))) 

 

IV.  Example of k-Nearest Neighbor classifier using Scikit Learn 

from sklearn import datasets 

from sklearn.metrics import confusion_matrix 

froms klearn.model_selection import train_test_split 

 

# Loading the iris dataset 

iris=datasets.load_iris() 

 

 

# X -> features, y -> label 

X=iris.data 

y=iris.target 

 

 

print(X) 

print(y) 

 

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.67) 

 

# Training a KNN classifier 

from sklearn.neighbors import KNeighborsClassifier 

knn=KNeighborsClassifier(n_neighbors=7).fit(X_train,y_train) 

 

# Accuracy on X_test 

accuracy=knn.score(X_test,y_test) 

print(accuracy) 

 

 

# Displaying Predictions 

knn_predictions=knn.predict(X_test) 
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df = pandas.DataFrame({'Actual': y_test.flatten(), 'Predicted': 

knn_predictions.flatten()}) 

print(df) 

 

print(knn_predictions) 

print(y_test) 

 

# Creating a confusion matrix 

cm=confusion_matrix(y_test,knn_predictions) 

print(cm) 

 

V. Decision Tree 
 

Example of Decision Tree Classifier  
 
from sklearn import datasets 

from sklearn.model_selection import train_test_split 

from pandas import DataFrame 

from sklearn import tree 

from sklearn.metrics import accuracy_score 

 

iris = datasets.load_iris() 

X = iris.data 

Y = iris.target 

 

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=1/3) 

 

# Training a decision tree classifier 

model = tree.DecisionTreeClassifier() 

model.fit(X_train, Y_train) 

 

# Testing 

model_predictions = model.predict(X_test) 

print('Testing Data Targets:', end='\n') 

print(Y_test) 

print('Predicted Data Targets:', end='\n') 

print(model_predictions) 

 

 

# Accuracy of prediction 

accuracyScore = accuracy_score(Y_test, model_predictions) 

print(accuracyScore) 

 

Regression with Decision Tree 
 
import pandas 

from sklearn import metrics 

from sklearn.model_selection import train_test_split 

from sklearn.tree import DecisionTreeRegressor 

 

# The dataset 

dataset=pandas.read_csv('salaryData.csv') 

x=dataset['YearsExperience'].values 
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y=dataset['Salary'].values 

X=x.reshape(len(x),1) 

Y=y.reshape(len(y),1) 

xTrain,xTest,yTrain,yTest=train_test_split(X,Y,test_size=1/3) 

 

# Creating a Decision Tree Regressor 

regressor=DecisionTreeRegressor() 

regressor.fit(xTrain,yTrain) 

 

 

# Predicting the test set results 

yPrediction=regressor.predict(xTest) 

 

#  Displaing input, output and errors 

print('Testing Data Dependant Values:', end='\n') 

print(yTest) 

print('Predicted values:', end='\n') 

print(yPrediction) 

print('Mean Absolute 

Error:',metrics.mean_absolute_error(yTest,yPrediction)) 

 

 

 

VI.  Naïve Bayes Classifier 
 
Example of Naïve Bayes Classifier 

 

from sklearn import datasets 

from sklearn.metrics import confusion_matrix 

from sklearn.model_selection import train_test_split 

from pandas import DataFrame 

from sklearn.naive_bayes import GaussianNB 

from sklearn.metrics import accuracy_score 

 

# The dataset 

iris = datasets.load_iris() 

X = iris.data 

Y = iris.target 

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=1/3) 

 

# Training a Gaussian Naive Bayes classifier 

model = GaussianNB() 

model.fit(X_train, Y_train) 

 

# Predictions 

model_predictions = model.predict(X_test) 

print(model_predictions) 

print(Y_test) 

 

# Accuracy of prediction 

accuracyScore = accuracy_score(Y_test, model_predictions) 

print(accuracyScore) 

 

# Creating a confusion matrix 

cm=confusion_matrix(Y_test,model_predictions) 

print(cm) 
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VII. Neural Network Models 
 
Classification with Neural Network 

 

from sklearn import datasets 

import pandas 

 

# The dataset 

iris = datasets.load_iris() 

X = iris.data 

Y = iris.target 

 

# Working with data 

from sklearn.model_selection import train_test_split 

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=1/3) 

from sklearn.preprocessing import StandardScaler 

scaler = StandardScaler() 

scaler.fit(X_train) 

X_train = scaler.transform(X_train) 

X_test = scaler.transform(X_test) 

 

print('Scalled training data:', end='\n') 

print(X_train) 

print('Scalled testing data:', end='\n') 

print(X_test) 

 

# Training the classifier 

#import warnings 

#warnings.simplefilter("ignore") 

 

from sklearn.neural_network import MLPClassifier 

mlp = MLPClassifier() 

mlp.fit(X_train,Y_train) 

 

# Predictions 

predictions = mlp.predict(X_test) 

print(predictions) 

print(Y_test) 

 

# Accuracy 

from sklearn.metrics import accuracy_score 

accuracyScore = accuracy_score(Y_test, predictions) 

print(accuracyScore) 

 

 

VIII. k-means Clustering using Scikit-Learn  
Simple Example 
 
from pandas import DataFrame 

import matplotlib.pyplot as plt 

from sklearn.cluster import KMeans 
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Data = {'x': 

[25,34,22,27,33,33,31,22,35,34,67,54,57,43,50,57,59,52,65,47,49,48,35,33,

44,45,38,43,51,46], 

'y': 

[79,51,53,78,59,74,73,57,69,75,51,32,40,47,53,36,35,58,59,50,25,20,14,12,

20,5,29,27,8,7] 

       } 

 

df = DataFrame(Data,columns=['x','y']) 

 

plt.title("Data before clustering") 

plt.scatter(df['x'], df['y']) 

plt.show() 

 

cn =int(input("How many clusters? :")) 

kmeans = KMeans(n_clusters=cn).fit(df) 

centroids = kmeans.cluster_centers_ 

print(centroids) 

 

plt.title("Data after clustering") 

plt.scatter(df['x'], df['y'], c= kmeans.labels_) 

plt.scatter(centroids[:, 0], centroids[:, 1], c='red') 

plt.show() 

 
Upgraded Example 

 

import matplotlib.pyplot as plt 

import pandas 

from sklearn.cluster import KMeans 

from pandas import DataFrame 

 

dataset = pandas.read_csv('ClusteringData.csv') 

print(dataset.shape) # number of rows and columns 

for col in dataset.columns: 

    print(col) 

 

x = dataset['Quiz'].values 

y = dataset['Final Exam'].values 

print(x) 

print(y) 

for i in range(len(y)): 

    if(y[i]=='Abs'): 

        y[i]= 0.0 

    else: 

        y[i] = float(y[i]) 

print(x) 

print(y) 

 

plt.title("Data before clustering") 

plt.xlabel('Class Test Marks') 

plt.ylabel('Final Exam Marks') 

plt.scatter(x, y, color='BLUE') 

plt.show() 

 

cn = int(input("How many clusters? :")) 
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table={'X':x,'Y':y} 

data=DataFrame(table,columns=['X','Y']) 

kmeans = KMeans(n_clusters=cn).fit(data) 

centroids = kmeans.cluster_centers_ 

print(centroids) 

 

plt.title("Data after clustering") 

plt.xlabel('Class Test Marks') 

plt.ylabel('Final Exam Marks') 

plt.scatter(data['X'], data['Y'], c= kmeans.labels_) 

plt.scatter(centroids[:, 0], centroids[:, 1], c='red') 

plt.show() 

 
 

IX. Cross Validation 
 

from sklearn.datasets import load_iris 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.model_selection import KFold 

from sklearn.metrics import accuracy_score 

import warnings 

warnings.simplefilter("ignore") 

 

iris_data = load_iris() 

 

x = iris_data.data 

y = iris_data.target 

 

kf = KFold(n_splits=5) 

 

print("\nK nearest neighbor:") 

i=1 

for train_index, test_index in kf.split(x): 

    x_train, x_test = x[train_index], x[test_index] 

    #print('Fold No.:', i,'**********') 

    #print(x_train) 

    #print(x_test) 

    #i=i+1 

    y_train, y_test = y[train_index], y[test_index] 

    knn = KNeighborsClassifier() 

    knn.fit(x_train,y_train) 

    prediction = knn.predict(x_test) 

    print(accuracy_score(y_test, prediction)) 
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MID TERM EXAMINATION 

There will be a 40-minutes written mid-semester examination on the materials covered in 

the sessions conducted during the first half of the semester.  

 

TERM FINAL EXAMINATION 

There will be a 40-minutes written end-of-semester examination on the materials covered 

in the sessions conducted during the second half of the semester. 

 

 

END 

 

 

 

 

 

 

 

 

 

 

 


